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Abstract

Cysticercosis is a neglected tropical disease caused by the larval stage of the zoonotic tape-

worm (Taenia solium). While there is a clear spatial component in the occurrence of the par-

asite, no geostatistical analysis of active human cysticercosis has been conducted yet, nor

has such an analysis been conducted for Sub-Saharan Africa, albeit relevant for guiding

prevention and control strategies. The goal of this study was to conduct a geostatistical anal-

ysis of active human cysticercosis, using data from the baseline cross-sectional component

of a large-scale study in 60 villages in Burkina Faso. The outcome was the prevalence of

active human cysticercosis (hCC), determined using the B158/B60 Ag-ELISA, while various

environmental variables linked with the transmission and spread of the disease were

explored as potential explanatory variables for the spatial distribution of T. solium. A gener-

alized linear geostatistical model (GLGM) was run, and prediction maps were generated.

Analyses were conducted using data generated at two levels: individual participant data and

grouped village data. The best model was selected using a backward variable selection pro-

cedure and models were compared using likelihood ratio testing. The best individual-level

GLGM included precipitation (increasing values were associated with an increased odds of

positive test result), distance to the nearest river (decreased odds) and night land tempera-

ture (decreased odds) as predictors for active hCC, whereas the village-level GLGM only

retained precipitation and distance to the nearest river. The range of spatial correlation was

estimated at 45.0 [95%CI: 34.3; 57.8] meters and 28.2 [95%CI: 14.0; 56.2] km for the indi-

vidual- and village-level datasets, respectively. Individual- and village-level GLGM unrav-

elled large areas with active hCC predicted prevalence estimates of at least 4% in the south-
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east, the extreme south, and north-west of the study area, while patches of prevalence esti-

mates below 2% were seen in the north and west. More research designed to analyse the

spatial characteristics of hCC is needed with sampling strategies ensuring appropriate char-

acterisation of spatial variability, and incorporating the uncertainty linked to the measure-

ment of outcome and environmental variables in the geostatistical analysis.

Trial registration: ClinicalTrials.gov; NCT0309339.

Author summary

Cysticercosis is a serious, yet neglected disease caused by the larval stage of a zoonotic

tapeworm, prevalent in many developing countries, including Burkina Faso. Being able to

predict where the disease occurs is essential for running targeted prevention and control

activities. In our study, we aimed to describe whether human cysticercosis cases in three

provinces in Burkina Faso were clustered, and investigated whether there was a link

between this clustering and some land and weather variables. Finally, we aimed to gener-

ate high-resolution prediction maps for the occurrence of the infection. We found that

there was clustering at 45 meters for the individual- and 28.2 km for the village-level data-

sets, respectively. Increasing rainfall and proximity to a river were linked with this cluster-

ing. The generated prediction maps indicated there were important cysticercosis hotspots

in the study area, especially in the extreme south and north-west, where the disease is

thought to be more important. Further research should expand the use of spatial tech-

niques to predict the occurrence of cysticercosis, the results of which can aid in the design

of intervention programmes.

Introduction

Cysticercosis is a neglected tropical zoonosis, acquired by ingestion of eggs shed by a human

tapeworm (Taenia solium) carrier. Humans can become infected because of poor hand

hygiene (faecal-oral route) or through the consumption of contaminated food or water [1,2].

Upon ingestion of the eggs, the larval forms of T. solium will migrate throughout the body and

develop into cysticerci, fluid-filled cyst-like structures (human cysticercosis (hCC)). In

humans, cysticerci have a distinct tropism for subcutaneous tissues and the central nervous

system (neurocysticercosis (NCC)) [3]. Neurocysticercosis has an important public health

impact, as many cases suffer from its neurological manifestations, such as seizures, chronic

headaches, increased intracranial pressure and even death [4].

A geostatistical analysis uses a specific set of methods to process georeferenced data that are

inherently more similar when closer together. As such, these methods allow researchers to

describe and model the spatial variability patterns of the data. Another important, if not the

most important, objective of a geostatistical analysis is to predict values at unsampled locations

through the creation of continuous surfaces from point data, also called interpolation, while

also estimating the uncertainty linked to these predictions [5]. These techniques can be used

for public health threats, to unravel the spatial structure of the variability in prevalence esti-

mates, to identify environmental characteristics affecting the distribution of prevalence esti-

mates, and to predict where a prevalence value exceeds a specific threshold [6]. The latter can

be most useful in terms of the identifying target areas for intervention strategies.
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Model-based geostatistical methods have been used for a number of neglected tropical dis-

eases such as lymphatic filariasis [7], onchocerciasis [8,9], schistosomiasis [10–14] and soil-

transmitted helminth infections [15–18]. Studies focussing on the spatial distribution of the

infections caused by T. solium have so far unravelled relevant information about disease cluster-

ing [19–24] and distance-dependent relationships between conditions caused by the different

life stages of the parasite [25–28]. Yet, up to now, only one study has conducted a geostatistical

analysis for human infections caused by T. solium. Using data from a national baseline serosur-

vey in Colombia, Galipó et al. [29] determined that there was spatial correlation in seropositivity

estimated up to approximately 140 km. However, that study used an ELISA applied to blood

samples collected on filter paper to detect circulating T. solium cysticercus antibodies, its results

thus point to exposure to the parasite. To our knowledge, no study has so far conducted a geos-

tatistical analysis for active T. solium infections, nor has such an analysis been conducted for

Sub-Saharan Africa. Thus, the aim of this work was to conduct a geostatistical analysis of active

hCC, using data from 60 villages in three provinces of Burkina Faso.

Methods

Ethics statement

Ethical approval was obtained from the University of Oklahoma Health Sciences Center Institu-

tional Review Board and the Centre MURAZ ethical review panel in Burkina Faso. The data used

for this study were collected for a trial, registered with ClinicalTrials.gov, number NCT0309339.

Written informed consent was obtained for all study participants. Parents consented in writing for

children younger than 18 years and children older than 10 years were asked for their written assent.

Study design

The field data used in this study were collected in the context of a large cluster randomized-

control trial (cRCT), called EFECAB, investigating the effect of an educational intervention on

cumulative incidence of active hCC [30–33]. More specifically, currently reported data were

collected during the baseline cross-sectional component of this trial, conducted between Feb-

ruary 2011 and January 2012 (STROBE checklist, S1 STROBE checklist).

The study was conducted in 60 villages in three provinces of Burkina Faso (Fig 1). The

inclusion and exclusion criteria, selection procedures for study provinces, departments, vil-

lages, concessions (i.e., a group of households living in a compound), households, and partici-

pants, and rationale for sample sizes, have been described elsewhere [30–33]. Briefly, the study

provinces, corresponding together to 4.9% of the country’s total area, were selected due to

their large pig population (Boulkiemdé and Sanguié) or neighbouring position and local

reports of humans feeding stool to pigs (Nayala). All pig raising departments were included in

the study, and in each department, two villages meeting the eligibility criteria for the cRCT

namely having a population of at least 1000 people (2006 census), being present on the map of

the Institut Géographique du Burkina (year 2000), and separated from the other selected vil-

lages by at least 5 km, were randomly selected. Capitals of the region or province were

excluded as well as villages located within 20 km of the large cities Koudougou or Ouagadou-

gou or on a national or provincial road.

Participants

In each village, concessions were selected using a stratified random sampling approach, with

the different pig production types (reproductive sows, piglets or no pigs) as strata [30]. In each

village, 80 concessions were randomly selected (at least 10 concessions raising sows, at least 30
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concessions raising piglets aged 12 months or younger). A handheld GPS device was used to

record the geographical coordinates at the centre of each concession. After asking the chief of

each selected concession for consent to participate in the study, one household per concession

was randomly sampled and the household chief asked for consent to participate. Finally, one

eligible person from the selected household was randomly selected and asked for consent to

participate. Individuals were eligible if they were at least 5 years old, had resided in the village

during the past year, and intended to remain there for the next three years.

Eligible individuals (one person per household) were invited to participate in the study, this

entailed providing a blood sample for the serological component of the study and answering a

screening questionnaire. Recruitment continued until 60 people consented to participate in

each village. Additionally, 20 eligible individuals per village, who refused to participate to the

serological compound, were invited to only participate in the screening questionnaire. The

screening questionnaire investigated the presence of symptoms that could be linked to NCC

(i.e. chronic worsening severe headaches, seizures and/or epilepsy) as well as socio-demo-

graphic information and knowledge about cysticercosis and epilepsy. Participants who

screened positive to the presence of symptoms suggestive of NCC were invited to provide a

blood sample to help with the diagnosis of NCC. Parents consented for children younger than

18 years and children older than 10 years were asked for their assent.

Outcome data

Each of the participants was sampled for blood by means of venipuncture of the antebrachium

vein, using a syringe and 10 ml serum gel tubes. Once collected, the tubes were cooled and

Fig 1. Location of Burkina Faso in Africa, and of the study area in Burkina Faso. (Study provinces: N = Nayala, S = Sanguié, B = Boulkiemde) (https://www.

diva-gis.org/gdata).

https://doi.org/10.1371/journal.pntd.0011437.g001
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transported to the processing unit. There, serum was collected, and stored at -20˚C until

analysis.

Using the B158/B60 Ag-ELISA, serum samples were tested for the presence of excretory/

secretory circulating antigens of T. solium cysticerci, i.e. active cysticercosis [34]. The optical

density (OD) of each serum sample was compared with the mean OD of eight negative refer-

ence human sera samples at a probability level of p = 0.001 to determine the test result. In an

earlier study conducted in Ecuador, this B158/B60 Ag-ELISA was reported to have a sensitivity

of 90% (95% Bayesian Credible Interval (BCI): 80–99%) and a specificity of 98% (95%BCI: 90–

99%) to detect active infection [35]. The Ag-ELISA result (i.e. positive or negative), repre-

sented the occurrence of active hCC, and the prevalence of active hCC was considered the out-

come variable of the study. All hCC survey data were entered in an Excel file.

Environmental data

A list of environmental variables considered potentially linked with the transmission and

spread of hCC based on earlier work on Taenia spp. and other helminths [36] was drafted and

explored as potential explanatory variables for the spatial distribution of T. solium. Datasets for

the environmental variables were retrieved from online accessible data sources (Tables 1 and

S1). In case datasets for multiple time points were available, it was opted to go for a file that

contained data from around the mid-point of the data collection period (i.e. July 2011).

The environmental datasets were clipped to the boundaries of the three study provinces to

ensure faster processing of files. The coordinate reference system of the country boundaries

and all environmental datasets were converted to the Universal Transverse Mercator 30N zone

to allow distance measurements to be expressed in meters. The file with existing waterlines

was additionally used to create a dataset (1 km × 1 km) containing distance at each point to the

nearest river. Furthermore, a prediction grid with cells of 1 km × 1 km was generated.

Finally, environmental data were extracted at the living locations of the participants to the

hCC serosurvey and at the centroids of the prediction grid. For continuous variables, this

entailed bilinear interpolation, based on the values of the four nearest cells, while for categori-

cal variables, simple interpolation was chosen, i.e. the value for the cell where a point was

Table 1. Sources for the environmental data considered as potential explanatory variables for the spatial distribution of T. solium.

Variable Source Date or time period Unit Spatial resolution

Country/province boundary DIVA-GIS 1992 - -

Potential evapotranspiration CGIAR-CSI July 2011 mm/month 1km

Elevation CGIAR SRTM - m 1km

Land cover MODIS-Terra 2011 - 0.5km

Land surface temperatures MODIS-Terra 04-July-2011 Celsius 1km

NDVI MODIS-Terra 12-July-2011 NDVI 1km

Precipitation WorldClim 1970–2000, July mm/month 1km

Water lines DIVA-GIS 1992 - -

Soil pH (0–5 cm) ISRIC - - 250m

Soil sand (0–5 cm) ISRIC - g/100g (%) 250m

Soil clay (0–5 cm) ISRIC - g/100g (%) 250m

Soil silt (0–5 cm) ISRIC - g/100g (%) 250m

CGIAR-CSI: Consultative Group for International Agricultural Research—Consortium for Spatial Information (CGIAR-CSI); CGIAR SRTM: CGIAR Shuttle Radar

Topography Mission; DIVA-GIS: Data-Interpolating Variational Analysis—Geographic Information System; ISRIC: International Soil Reference and Information

Centre; MODIS: Moderate Resolution Imaging Spectroradiometer; NDVI: Normalized Difference Vegetation Index; WorldClim: World Climate

https://doi.org/10.1371/journal.pntd.0011437.t001
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included. Values were expressed in their original units by multiplying with the scale factor

mentioned at each data source, temperatures were additionally converted from Kelvin to

Celsius.

Data analysis

For the data analysis, two databases were used: i) a dataset including information at the indi-

vidual level, ii) a dataset including the individual data grouped at the village level. The village-

level dataset included the number of sampled individuals and the number of the participants

testing positive using the Ag-ELISA per village, the mean coordinates of the village survey

points, and the village mean of survey point values for the environmental variables.

Descriptive statistics were calculated for the outcome and environmental variables. Maps of

the study area, location of the survey points and village prevalence estimates were created, so

were maps of the study area for the environmental data. Spearman’s ρs correlation coefficients

were calculated to measure the association between sets of two environmental variables to

detect potential issues of multicollinearity.

A variogram V̂ ðuÞ was calculated to describe the spatial continuity of the outcome variable

both at the village- and individual-level as follows:

For the individual-level data, the variogram was calculated using the outcome value for

each participant. For the village-level data, the empirical logit [37] of the outcome variable was

first calculated:

y∗i ¼ log
yi þ 0:5

ni � yi þ 0:5

� �

ð1Þ

with yi, the number of participants with positive test results in village i, and ni, the total number

of participants samples in village i. The addition of 0.5 was included to accommodate for yi = 0

and yi = ni, i.e. to avoid plus and minus infinity. The variogram V̂ ðuÞ was then calculated for

the empirical logit y∗i , using the following formula (6):

V̂ ðuÞ ¼
1

2jNðuÞj

X

ðh;kÞ2NðuÞ

ðy∗h � y∗kÞ
2

ð2Þ

with N(u) being the number of data-pairs at lag distance u apart from each other; u is the lag

distance between two points, and y∗h and y∗k are the empirical logit for the outcome variable at

location h and k, respectively. Data pairs were first classified in distance bins and the empirical

variogram was averaged for each bin.

For both datasets, a variogram model was then fitted to get a first estimate for the variogram

parameters, using weighted least squares, with the weights being the number of pairs per bin,

and the general-purpose Nelder–Mead approach for numerical optimization [38].

Next, and for each dataset, the association between the outcome variable and each environ-

mental variable was explored, using scatter plots and generalized linear models (GLM) (for

detailed procedure see S1 Text). Briefly, the final selection of environmental variables was

done using a backward stepwise approach, where models were compared using the likelihood-

ratio test. Once the final model had been selected, the presence of residual spatial correlation

was investigated using a using a Monte Carlo method (see S1 Text for details).

The selected environmental variables were then included in a generalized linear geostatisti-

cal model (GLGM) formulated with the following structure (6):

log
pðxiÞ

1 � pðxiÞ

� �

¼ dðxiÞ
t
bþ S xið Þ þ Zi ð3Þ
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with p(xi) being the probability for a positive test result; d(xi)tβ, the transposed column vector

of the selected explanatory variables di at point xi with regression coefficients β. The spatial

term, S(xi)~N(0,σ2) represents a dependent stationary isotropic Gaussian process, i.e. a Gauss-

ian process with constant variance (σ2 compares to the sill in classical geostatistical terminol-

ogy) of which the covariance only depends on the distance between points. The correlation

between S(xi) and S(xj), the spatial component at locations i and j, is defined by the correlation

function ρ(u). Several correlation functions have been suggested including the exponential,

spherical and Matérn families. Here, we assume that r u;�ð Þ ¼ exp � u
�

� �
, where u is the lag

distance between points xi and xj, with u�0; and ϕ a scale factor with ϕ>0. For this exponential

correlation function, the practical range up (i.e. the lag distance where 95% of the sill is

reached, or where ρ(u) has decayed to 0.05) is up�3×ϕ. Zi is a mutually independent Gaussian

process, i.e. the spatial variation at a distance below the minimum observed distance, or ran-

dom variation due to measurement error, with Zi~N(0, τ2), where τ2 compares to the nugget

in classical geostatistical terminology.

Three GLGMs were fitted, M1 and M2, an individual- and a village- level model, respec-

tively, with the covariates selected in the final individual and village level GLM (S3 Table) as

well as an additional GLGM, M3, which had the same covariates as the village-level GLM, to

allow comparison of the final prediction maps generated by the village- and individual-level

data.

Parameter estimation was performed using the Monte Carlo maximum-likelihood

(MCML) method which is detailed in [39] and [40]. The algorithm used to fit the GLGM (M1,

M2, M3) had the GLM estimates for the coefficients (S3 Table), and the weighted least squares

estimates for the variogram parameters σ2 and ϕ, as starting values, while τ2 was fixed at 0 (as

estimated as such in the variogram analysis). Overfitting was assessed by investigating the cor-

relation matrix of the regression coefficient estimates, with a Pearson’s ρ correlation coefficient

approaching 1 or -1 considered indicative for overfitting [41].

The predictive target, T*, was defined as the prevalence surface over the study area, A (6):

T∗ ¼ pðxÞ ¼
expfTðxÞg

1þ expfTðxÞg
: x 2 A

� �

ð4Þ

with p(x) being the probability for a positive test result; and T(x) = d(x)tβ+S(x). Maps of the

predicted prevalence and associated standard errors were created.

Additionally, both for the individual-level and village-level datasets, maps were generated

for the exceedance of a set prevalence threshold, l. Based on our own experience, we set the

prevalence threshold was at 5%, as this prevalence was deemed worth identifying for prioritis-

ing intervention campaigns. The probability for the prevalence to exceed this threshold (also

called the 5% exceedance probability) was calculated as follows (6):

RlðT
∗Þ ¼ frðxÞ : P½WðxÞ > ljy� ¼ rðxÞ; x 2 Ag ð5Þ

with l being the prevalence threshold; W(x), the predicted prevalence, W(x) = g−1{T(x)} with

g−1{�}, the inverse link function in the GLGM; and r(x) the point-wise exceedance probability.

This probability was depicted on the prediction grid with grid cells of 1 km × 1 km spatial reso-

lution. Finally, to assess the compatibility of the chosen spatial correlation structure, (i.e. cor-

rect specification of nugget τ2, and scale factor, ϕ), a Monte Carlo procedure was used (6). The

procedure is detailed in S2 Text.

All statistical procedures were conducted in R version 4.0.5 [42]. The statistical significance

level was set at 5%.
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Results

Descriptive statistics

Data were available for a total of 3598 individuals living in 60 villages in three provinces in

Burkina Faso (Fig 2). The north-south dimension of the study area was 154 km, while its east-

west dimension was 199 km, and its longest dimension was 195 km. Out of the 3598 individu-

als, 30 lacked information for the main outcome variable (i.e. Ag-ELISA result), 12 had no vil-

lage name assigned, and 4 data points were co-located. Of the remaining 3551 participants,

115 (3.24%) tested positive in the Ag-ELISA for active hCC. The number of participants ran-

ged between 52 and 66 per village, with a median of 59. Out of the 60 villages, 48 had positive

cases, in those villages, the number of positive cases ranged from 1 to 7, with a median of 2.

Overall, village prevalence estimates ranged from 0 to 11.5%, with a median of 1.85%. Villages

Fig 2. Study area with village-level data points and prevalence (derived from the individual-level dataset), and histogram of the prevalence (https://www.

diva-gis.org/gdata).

https://doi.org/10.1371/journal.pntd.0011437.g002
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with higher prevalence estimates seemed primarily located in the south-east of the study area

(Fig 2).

The environmental data showed considerable variation over the study area (S1 Fig and S2

Table), except for land cover, where type 31 (i.e. barren land) was predominant. For this rea-

son, land cover was excluded from further analyses. A strong negative correlation existed

between elevation and soil clay (individual-level data: Spearman ρ = -0.65), and between soil

clay and soil sand (ρ = -0.80) (Fig 3A), whereas a positive correlation was observed between

elevation and soil sand (ρ = 0.69). Correlations were similar for the village-level dataset

(Fig 3B).

Variogram

Fig 4A illustrates the variogram for the individual-level data. When decreasing the maximum

lag distance to 400 meters (18 bins, number of data pairs per bin: 31–1208), an increase in var-

iogram values was observed when moving from zero to around 60 meter lag distance, suggest-

ing spatial correlation at that scale. For the village-level data (Fig 4B), when the maximum lag

distance was restricted to 30 km, one low variogram value was observed at the shortest lag dis-

tance for which the variogram was calculated, thereafter the values fluctuated around 0.60. The

number of data pairs per bin (with 12 bins) varied between 4 and 52.

Fig 3. Correlation plot for individual-level (A) and village-level (B) environmental data in the study area. Evap:

potential evapotranspiration, tempday: land surface temperature, day; tempnight: land surface temperature, night;

ndvi: normalized difference vegetation index; rain: precipitation; soilpH: soil pH (0–5 cm); soilsilt: soil silt (0–5 cm);

soilsand: soil sand (0-5cm); soilclay: soil clay (0–5 cm); waterdist: distance to the nearest river.

https://doi.org/10.1371/journal.pntd.0011437.g003

Fig 4. Final empirical variogram with fitted variogram model and number of pairs added for individual-level (A) and

village-level (B) outcome data (distance in km).

https://doi.org/10.1371/journal.pntd.0011437.g004
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For the individual-level data, the sill, σ2, representing the variance of the spatial effect, was

estimated at 0.029; the scale factor ϕ at 0.015 km with an estimated practical range, the distance

over which data were spatially correlated, of 0.045 km. The nugget, τ2, representing sampling

and/or measurement error, was estimated at 0. For the village-level data, the weighted least

squares estimates for σ2, ϕ, and τ2 were 0.68, 4.50 km (estimated practical range: 13.5 km) and

0, respectively.

Covariate selection

Based on the backward variable selection strategy, the final GLM included precipitation, dis-

tance to the nearest river and night land temperatures for the individual-level dataset while

only precipitation and distance to the nearest river were retained for the village-level dataset

(S3 Text).

Geostatistical model

The fitted GLGM for the individual-level data, M1, predicted that for each unit increase in

precipitation (mm/month), the odds for a positive test result increased by 12% (exp(0.11) =

1.12 [95% confidence interval (CI): 1.11;1.12], 1.12–1 = 0.12), if the other covariates were kept

constant (Table 2). Likewise, for each unit increase in distance to the nearest river (km), a

decrease in the odds of 8% (exp(-0.088) = 0.92 [95%CI: 0.91;0.92], 1–0.92 = 0.08) and for each

unit increase in night land temperature (˚C), a decrease in the odds of 37% (exp(-0.47) = 0.63

[95%CI: 0.62;0.63], 1–0.63 = 0.37) were predicted, if the other covariates were kept constant.

In the individual-level GLGM, M1, and M3, the variance of the spatial effect, σ2 was estimated

at exp(-3.63) = 0.027 [95%CI: 0.025;0.028], whereas the shape factor, ϕ was estimated at exp

(-4.21) = 0.015 [95%CI: 0.011;0.019]. The practical range, u, for hCC spatial correlation, after

accounting for the covariates, was thus u�3×ϕ = 0.045 km or 45 [95%CI: 34.3;57.8] meters. In

other words, individual level data were estimated to be spatially correlated up to 45 meters.

Table 2. Parameter estimates in generalized linear geostatistical model for individual- and village-level data.

Model Model-level Parameter Estimate 95%CI p-value

M1 Individual Intercept -9.54 [-10.0;-9.03] <0.001

Precipitation (mm/month) 0.11 [0.10;0.11] <0.001

Distance to the nearest river (km) -0.088 [-0.090;-0.086] <0.001

Land temperature, night (˚C) -0.47 [-0.48;-0.46] <0.001

log(σ2) -3.63 [-3.67;-3.58]

log(ϕ) -4.21 [-4.47;-3.95]

M2 Village Intercept -20.4 [-33.4;-7.37] <0.002

Precipitation (mm/month) 0.10 [0.024;0.18] 0.011

Distance to the nearest river (km) -0.086 [-0.14;-0.035] 0.001

log(σ2) -1.19 [-1.62;-0.75]

log(ϕ) 2.24 [1.54;2.93]

M3 Individual Intercept -24.0 [-24.4;-23.6] <0.001

Precipitation (mm/month) 0.12 [0.12;0.13] <0.001

Distance to the nearest river (km) -0.080 [-0.082;-0.078] <0.001

log(σ2) -3.63 [-3.67;-3.58]

log(ϕ) -4.21 [-4.47;-3.95]

95%CI: 95% confidence interval

https://doi.org/10.1371/journal.pntd.0011437.t002
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Similar effect sizes of the environmental variables were observed using the village-level

dataset. Indeed, the fitted GLGM, M2, predicted that for each unit increase in precipitation

(mm/month), the odds for a positive test result was increased by 11% (exp(0.10) = 1.11 [95%

CI: 1.02;1.20], 1.11–1 = 0.11), if the distance to the nearest river was kept constant. Moreover,

for each unit increase in distance to the nearest river (km), a decrease in the odds for a positive

test result by 8% (exp(-0.086) = 0.92 [95%CI: 0.87;0.97], 1–0.92 = 0.08) was predicted, if precip-

itation was kept constant. The variance of the spatial effect, σ2 was estimated at exp(-1.19) =

0.30 [95%CI: 0.20;0.47], whereas the shape factor, ϕ was estimated at exp(2.24) = 9.39 [95%CI:

4.66;18.7]. The practical range, u, for hCC spatial correlation was thus u�3×ϕ = 28.2 [95%CI:

14.0;56.2] km, or in other words, the village-level data were estimated to be spatially correlated

up to 28.2 km. No overfitting was observed for any of the GLGM (all |ρP|< 0.35).

Prediction

Maps were drawn for the predicted hCC prevalence, standard error and probability of exceed-

ing the 5% threshold (Figs 5–7). The dataset for night land temperatures had six missing

Fig 5. Predicted prevalence (A), standard errors (B) and probability to exceed 5% prevalence (C) based on the geostatistical model M1 for the participant-level

data (https://www.diva-gis.org/gdata).

https://doi.org/10.1371/journal.pntd.0011437.g005
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values, resulting in a blank empty pixel at six locations on the prediction maps based on the

individual-level GLGM M1 (Fig 5A). The prediction maps for active hCC prevalence gener-

ated from the individual- and village-level GLGM, M1, M2 and M3 (Figs 5A, 6A, 7A, respec-

tively), identified important areas with hCC prevalence estimates of at least 4% in the south-

east, as well as, albeit to a lesser extent, in the extreme south, and north-west of the study area,

while patches of prevalence estimates below 2% were mainly apparent in the north and west.

The standard errors for the prevalence estimates exhibited a similar pattern as the predicted

prevalences for all GLGM (Figs 5B, 6B, 7B), with higher standard errors in areas with higher

prevalence estimates. In the maps based on the individual-level GLGM, M1 and M3, the stan-

dard errors were distinctly lower, as compared to those found for the village-level GLGM, M2.

The map of the probability for the active hCC prevalence to exceed 5% (Figs 5C, 6C, 7C)

confirmed the conclusions drawn from the predicted prevalence maps: the exceedance proba-

bility was highest in the south-east and north-west of the study area (patches of>75% proba-

bility). However, the village-level GLGM (M2) produced a markedly smoother map of the

exceedance probability as compared to the individual-level GLGM (M1, and M3) maps. In

Fig 6. Predicted prevalence (A), standard errors (B) and probability to exceed 5% prevalence (C) based on the geostatistical model M2 for the village-level data

(https://www.diva-gis.org/gdata).

https://doi.org/10.1371/journal.pntd.0011437.g006
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the village-level GLGM (M2) map, patches of>25% probability could also be observed in the

south-east and north-west of the study area. Moreover, in large parts of the remaining areas in

the north, west and far east of the study area, the exceedance probability was consistently

lower than 10%.

Discussion

This study aimed to conduct a geostatistical analysis for active hCC in Burkina Faso, an

endemic country in Sub-Saharan Africa. This analysis allows for the spatial prediction of the

prevalence of active hCC at unsampled locations, which is informative to identify those areas

that would benefit most from targeted intervention programmes. Indeed, the analysis resulted

in a high resolution map (1 km × 1 km) of the predicted distribution of active hCC in the

study area, the provinces Boulkiemdé, Sanguié, and Nayala, with important clusters of hCC in

the south-east, as well as in the extreme south, and north-west. Moreover, the analysis indi-

cated that the practical range for spatial correlation of survey values was very short for the indi-

vidual-level dataset (45 meters), while rather large for the village-level dataset (28.2 km). The

Fig 7. Predicted prevalence (A), standard errors (B) and probability to exceed 5% prevalence (C) based on the geostatistical model M3 for the participant-level

data (https://www.diva-gis.org/gdata).

https://doi.org/10.1371/journal.pntd.0011437.g007
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difference between these two distances could be due to the spatial aggregation of the village-

level dataset (i.e. by design, all villages were at least 6 km apart from each other). Overall, these

distances are a lot shorter than the 140 km for the municipality-level data observed by Galipó

et al. [29]. However, a positive test result in the diagnostic test in that study (Ab-ELISA) indi-

cates exposure to the parasite, whereas in our study (Ag-ELISA), it indicates active or current

infection. Indeed, the Ab-ELISA can detect both viable, degenerating and calcified cysticerci,

but also past exposure to the parasite that didn’t result in infection, and a resolved infection

[35]. The Ag-ELISA on the other hand will only detect viable and early-stage degenerating cys-

ticerci, as only those will excrete/secrete antigens [35]. Furthermore, the actual test perfor-

mance of the antibody-ELISA run on dried blood spots, as used in the Galipó study [29] is

unclear considering that the paper describing the method does not clearly justify or explain

study groups [43]. Moreover, the study of Galipó et al. [29] was a national survey, sampling

133 out of 1122 municipalities, in 23 out of 32 of the country’s departments, whereas we sam-

pled all departments in three provinces. Overall, it is therefore not clear to what extent the

observed ranges can be compared.

The results of our fitted geostatistical models demonstrated that increasing precipitation,

and decreasing distance to the nearest river were associated with an increased probability for a

positive test result, and thus the presence of active hCC. In the individual-level model, decreas-

ing night land temperatures were additionally found to be associated with increased probabil-

ity for a positive test result. These results are in line with earlier studies indicating that Taenia
spp. eggs survive better in a moist environment, while high temperatures are detrimental for

their survival [36]. As expected, the variability in the hCC prediction maps closely resembled

those in the maps of the selected covariates. Moreover, for the individual-level GLGM, the

standard errors of the predicted prevalences were markedly lower than those generated by the

village-level GLGM, partly explained by the lack of high resolution data for the latter as com-

pared to the former. Finally, the exceedance probability map generated based on the village-

level GLGM was considerably smoother than those for the individual-level GLGM, which

could be explained by the combined effect of lower data density, and the smoothness in the

environmental data and in the the spatial structure adopted for the village-level GLGM.

The analysis also highlighted several challenges related to the use of the survey data on hCC

for prediction mapping. For the individual-level modelling, a large (ungrouped) dataset was

used (n = 3551), the analysis of which was associated with a relatively high computational bur-

den. For the village-level modelling on the other hand, the number of data points was subopti-

mal (n = 60). Webster and Oliver [44] had pointed out that at least 100 observations are

necessary to ensure reliable calculation of the variogram, while Journal and Huijbregts [45]

have indicated that at least 30 to 50 data-pairs are necessary for each distance bin. In the cur-

rent study, the 60 data points resulted in a low number of data-pairs available for the calcula-

tion of the empirical variogram for the village-level modelling, especially at the small distances,

affecting the reliability of the variogram model parameter estimation. Moreover, the sampling

design dictated that villages needed be at least 5 km apart to be included, thus hampering the

investigation of spatial continuity at the short distances. For both analyses, the variogram anal-

ysis estimated the nugget, representing sampling and/or measurement error (background

noise) at 0. In practice, however, the absence of a nugget seems unrealistic, as sampling and/or

measurement error might be present due to several factors.

Furthermore, a stratified multi-level random sampling approach was chosen for the pur-

pose of a cluster-randomized trial to be conducted in the study area, but it is not necessarily

ideal for conducting a geostatistical analysis. At the two extremes of sampling designs for geos-

tatistical modelling, are completely random designs (where point samples are collected ran-

domly across the study area), relatively efficient for estimation purposes; and completely
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regular designs (where point samples are, for instance, collected at regular distances across the

study area) for efficient spatial prediction [46]. The latter however assumes that the variogram

model parameters are known, which is most often not the case (these parameters then need to

be estimated from a single dataset), and for most geostatistical problems, a compromise is

needed between both goals [6,47]. This was also the case in the present work, where the vario-

gram model parameters were estimated from the same datasets used for prediction. It has been

shown that the completely regular design with close pairs added is one of the most effective

designs in this case (e.g., Diggle and Lophaven [48]), which is recommended for future geosta-

tistical analyses for hCC.

A number of limitations with regard to the interpretation and validity of study results were

also present. There were uncertainties related to the measurement of the outcome variable.

Firstly, the applied diagnostic tool is not a perfect test, its performance is characterised by a

sensitivity of 90% and specificity of 98%, thus impacting the estimation of the true prevalence

[35]. Furthermore, the selection of participants was not random, rather they were selected

from the concessions depending on pig type (i.e. sows, or piglets, although the levels of the var-

iable were not mutually exclusive). The presence of pigs could be linked to presence of T.

solium carriers and hence to the presence of hCC cases. In most villages, this should not have

been a huge issue since most concessions actually had pigs, so sampling bias due to this factor

was assumed to be minimal. It is also important to note that the survey data were considered

as point data throughout the analysis, i.e. it was assumed that the spatial support of the obser-

vations was negligible compared to the total size of the study area, and implicitly also that

there was no uncertainty in the location of these point data. However, for the data at hand,

some reservations exist about the extent to which this assumption holds. Participants did not

reside at a single point location only, but moved over a certain surface in space (spatial sup-

port). This surface was unknown and, moreover, differed in size and shape between different

participants. For both datasets, this had an impact on the calculation of variogram values at

short distances. For actual point data, the minimum distance for which a variogram value can

be calculated is limited to the smallest sampling distance. For point data that are actually sur-

face data, such as the data at hand, there can be an additional restriction due to the minimum

area (size) represented in the data points [49].

Several simplifications and assumptions were also made, which could have impacted the

quality of the environmental data used in the analysis. First, either yearly or mid-year datasets

were often the only ones available, which resulted in differences in temporal support across the

environmental variables. These choices also resulted in the assumption that there was no con-

siderable temporal variation, or that the observation in the middle of the sampling period was

sufficiently representative of the entire sampling period. Additionally, there was also a mismatch

between time of measurement (i.e. temporal support) of the explanatory variables and the out-

come data which came from a cross-sectional study conducted between February 2011 and Jan-

uary 2012. For the village-level dataset, the mean value of the sampled survey points was used as

village-level value for each environmental variable, resulting in loss of within-village variability

and an assumption that the mean was a representative summary statistic. For the soil variables,

it was assumed that the top layer (0–5 cm depth) was the most relevant layer for transmission of

T. solium. However, it is not inconceivable that eggs of the parasite can survive at larger depths,

and that in case of erosion due to heavy rainfall, especially in combination with a considerable

slope, these deeper layers could also contribute to the transmission. Finally, the analysis com-

bined environmental and outcome values for surveys points in three provinces in Burkina Faso,

thus assuming the structure of the spatial processes is similar in the three provinces. This could

be further investigated in separate analyses for the three provinces. Overall, however, this study

remains the only study of its type, and will guide further studies in the field.
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Software: Veronique Dermauw, Emanuele Giorgi.

Supervision: Ellen Van De Vijver, Pierre Dorny, Hélène Carabin.

Validation: Veronique Dermauw.

Visualization: Veronique Dermauw.

Writing – original draft: Veronique Dermauw.

Writing – review & editing: Veronique Dermauw, Ellen Van De Vijver, Pierre Dorny, Ema-
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30. Carabin H, Millogo A, Cissé A, Gabriël S, Sahlu I, Dorny P, et al. Prevalence of and factors associated

with human cysticercosis in 60 Villages in three provinces of Burkina Faso. PLoS Negl Trop Dis. 2015; 9

(11):1–20. https://doi.org/10.1371/journal.pntd.0004248 PMID: 26588468

31. Carabin H, Millogo A, Ngowi HA, Bauer C, Dermauw V, Koné AC, et al. Effectiveness of a community-
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