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This paper provides statistical guidance on the development and application
of model-based geostatistical methods for disease prevalence mapping. We
illustrate the different stages of the analysis, from exploratory analysis to
spatial prediction of prevalence, through a case study on malaria mapping
in Tanzania. Throughout the paper, we distinguish between predictive mod-
elling, whose main focus is on maximizing the predictive accuracy of the
model, and explanatory modelling, where greater emphasis is placed on
understanding the relationships between the health outcome and risk factors.
We demonstrate that these two paradigms can result in different modelling
choices. We also propose a simple approach for detecting over-fitting based
on inspection of the correlation matrix of the estimators of the regression coef-
ficients. To enhance the interpretability of geostatistical models, we introduce
the concept of domain effects in order to assist variable selection and model
validation. The statistical ideas and principles illustrated here in the specific
context of disease prevalence mapping are more widely applicable to any
regression model for the analysis of epidemiological outcomes but are particu-
larly relevant to geostatistical models, for which the separation between fixed
and random effects can be ambiguous.
1. Introduction
In this paper, our aim is to provide a guiding framework for the formulation,
application and validation of geostatistical models [1] for disease prevalence
mapping. Model-based geostiatistics (MBG) has been extensively used to
address scientific problems whose primary objective is to make probabilistic
inference on a spatially continuous phenomenon, using data collected over a
finite set of geo-referenced locations.

Here, we focus on cross-sectional surveys that are conducted in order to
understand the spatial variation of disease prevalence within a geographical
area of interest. In low-resource settings, disease registries are typically absent
and cross-sectional surveys often provide the only source of health outcome
data that can be used to infer the disease burden in a population. In this context,
the available data consist of a set of household locations xi, the numbers ni of
individuals who have been tested for the disease of interest, and the numbers
yi out of ni who have returned a positive test result. MBG provides a statistically
principled, likelihood-based approach for predicting disease prevalence, p(x), at
any desired location x in the area of interest by exploiting the spatial correlation
between the observations yi. In order to improve the efficiency of spatial predic-
tions for prevalence, MBG models also allow the inclusion of covariates, d(x),
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i.e. variables that are observed and recorded at a location x,
and are considered to be associated with p(x). In this paper,
our focus will be on the use of covariates d(x) that are avail-
able as a regular grid of locations covering the study area
(also known as raster data) and are used as a proxy for the dis-
tribution of disease vectors or to capture socio-economic
inequalities in the population. In the context of mosquito-
borne diseases in developing countries, two examples of
this kind of covariate are vegetation density, which quantifies
the suitability of a location to serve as a mosquito habitat, and
night-time light (NTL), which is often used as a proxy for the
local level of economic development. Because of their high-
spatial resolution, raster data are especially useful for predic-
tion of p(x) at locations where no data have been collected.
However, this leads to two fundamental questions. How
should we model the relationship between d(x) and p(x) in
MBG models? And how should we assess the impact of
d(x) on the spatial predictions of p(x)?

The answers to those questions might differ according to
the scientific objective of the study. As in Shmueli [2], we
distinguish between explanatory modelling and predictive
modelling. Under explanatory modelling the model-building
process, and in particular the selection of candidate covari-
ates, should be informed by context-specific scientific
knowledge of the underlying disease process, to the extent
that this is well understood. Also, interest lies principally in
understanding how risk-factors represented by the covariates
d(x) relate to disease prevalence p(x). In predictive modelling,
although context-specific scientific knowledge can still play
an important role, the effort is directed primarily towards
the development of a model that can predict as accurately
as possible future data generated by the same underlying
process. For these reasons, different concerns arise under
the two paradigms. For example, in explanatory modelling
accounting for measurement error in the covariates is impor-
tant in order to obtain unbiased estimates of regression
parameters that link d(x) to p(x). In predictive modelling,
the selection of covariates is carried out in order to minimize
a measure of prediction error and considerations about how
accurately a regression parameter d(x) measures the effect of
a putative risk factor are of less concern.

Current applications of disease prevalence mapping in
low-resource settings have adopted different approaches to
the development and application of geostatistical models,
especially in relation to the selection and use of covariates
for spatial prediction. The field of malaria epidemiology
offers many interesting examples that illustrate this. Weiss
et al. [3] propose an algorithmic approach to select a large
number of covariates for mapping malaria prevalence
across Africa, using standard, non-spatial logistic regression.
Specifically, starting with an initial set of more than 50 million
covariates including transformations and interactions of well-
established malaria risk factors, the authors proceed through
five steps of model selection by making extensive use of
cross-validation and the Akaike information criterion for
ranking different models. After reducing the number of cov-
ariates to 1887, a sixth step is carried out to identify a final set
of 20 covariates, each of which is randomly drawn from the
remaining set by giving preference to those showing better
predictive performance.

In a more recent paper, Bhatt et al. [4], predict malaria
prevalence using 15 pre-selected covariates without any
further reduction. In a first stage, a predefined set of regression
and non-parametric models are fitted separately to the data in
order to capture complex interactions between covariates and
their nonlinear relationships with prevalence. The resulting
predictions for prevalence from each of the applied methods
are then combined, using an approach that they term Gaussian
process stacked generalization. This delivers a single estimate
which is then re-used as a predictor in a linear geostatistical
model for the logit-transformed prevalence. Using cross-
validation, Bhatt et al. [4] show that this approach outperforms
other interpolation methods, including standard geostatistical
models where covariates are introduced simply as regression
terms in the linear predictor for prevalence. Here, the develop-
ment of the model-fitting algorithm is exclusively focused on
reducing a specified index of predictive performance in a
hold-out sample. However, the improved predictive perform-
ance is obtained at the expense of the interpretability and,
hence, the explanatory power of the model.

Within a Bayesian inferential setting, a widely used
approach to variables selection formalaria prevalencemapping
has been inspired by the seminal paper of George&Mulloch [5]
inwhich a latent binary variable is introduced into themodel in
order to identify subsets of the most important covariates.
Diboulo et al. [6] use this approach in the development of a geo-
statistical model for mapping malaria in Burkina Faso. Each of
the regression coefficients associated with a covariate is given
a prior consisting of amixture of two zero-meanGaussian distri-
butions with the variance of one of the two constrained to be
1000 times smaller than the variance of the other. The mixing
probability of the two distributions is assumed to be 0.5
a priori and a covariate is then retained in a subsequent fit of
the model if there is a posterior probability larger than 0.5
that favours the Gaussian distribution with the larger variance.
Variations of this approach have also been used by Giardina
et al. [7], Adigun et al. [8] and, for schistosomiasis prevalence
mapping, Chammartin et al. [9]. One of the main advantages
of these approaches is that the variable selection process takes
into account the spatial correlation in the data, unlike in Weiss
et al. [3]. However, several arbitrary choices aremade in the spe-
cification of the mixture distributions and it is unclear to what
extent these affect the identification of important covariates.

By contrast, Macharia et al. [10] and Giorgi et al. [11] fit
spatio-temporal geostatistical models to malaria prevalence
data in Kenya and Somalia without using any covariates
other than the age of the examined individuals at each
sampled location. The authors’ rationale for this choice was
a concern for the misspecification of the regression relation-
ship between d(x) and p(x), which might yield invalid
inferences for p(x) in areas where, due to the absence of
data, these would be entirely driven by the covariates d(x).
However, the use of an MBG model without any spatially
referenced covariates questions the face validity of predic-
tions that consequently revert to the mean prevalence level
at prediction locations remote from the sampled locations.
Also, it is unclear to what extent misspecifications of
regressions relationships between covariates and prevalence
might distort the resulting predictions. We investigate both
of these issues in the present paper.

A variety of approaches that have been used for building
geostatistical models in the context of other tropical diseases
include Slater et al. [12] and Moraga et al. [13] for lymphatic
filariasis; Zourè et al. [14] and O’Hanlon et al. [15] for oncho-
cerchiasis; Magalhães et al. [16] and Lai et al. [17] for soil-
transmitted helminths.
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Through a geostatistical analysis of malaria prevalence
data in Tanzania, this paper describes how to develop geo-
statistical models, from the first stage of exploratory analysis
to the final step of spatial prediction. Simulation studies are
also carried out in order to offer further insights into the use
and misuse of covariates for disease prevalence mapping.
The data and R scripts for the exploratory analysis, parameter
estimation and spatial prediction are freely available at: github.
com/giorgilancs/covariates.
/journal/rsif
J.R.Soc.Interface

18:20210104
2. Introducing the worked example
Throughout the paper, we use the data from the Tanzania
Demographic and Health Survey and Malaria Indicators
Survey conducted in 2015 (henceforth, DHS-MIS2015) [18].
This consists of 387 geo-referenced locations representing
clusters of households falling within predefined geographical
areas, known as census enumeration areas (EAs), which were
delineated for the 2012 Tanzania Population and Housing
Census.

The survey employed a two-stage stratified sampling
design to provide estimates for the entire country, for urban
and rural areas in Tanzania Mainland, and for Zanzibar.
For specific indicators, the sample design allowed the esti-
mation of indicators for each of the 30 regions (25 regions
from Tanzania Mainland and five regions from Zanzibar)
while the rest were representative for each of the nine
zones. Stratification was achieved by separating each region
into urban and rural areas, resulting in 59 sampling strata.
In the first stage, clusters consisting of EAs were selected
from the 2012 Tanzania Population and Housing Census
sampling frame. In the second stage, 22 households were sys-
tematically selected from each cluster from a complete listing
of households within each selected cluster. In all selected
households, with the parent’s or guardian’s consent, children
age 6–59 months were tested for Plasmodium falciparum.

The research question we address is: in what areas of Tan-
zania is malaria prevalence above 0.3? As in previous studies
[10,19], here, we use a 0.3 (i.e. 30%) prevalence threshold to
define high malaria burden areas that require intensive and
sustained vector control.

Our outcome variable is the number of positive test
results, yi, based on a rapid diagnostic test (RDT) for Plasmo-
dium falciparum antigenaemia, out of ni examined individuals
at location xi, for i = 1,…, N with N = 790.

In our analysis, we consider the following spatially refer-
enced candidate covariates for modelling P. falciparum, all of
which have been used in most previous studies on malaria
risk mapping [20–22].

— Population density, obtained from the WorldPop database
(www.worldpop.org), is used to account for the higher
levels of malaria transmission in low-populated rural
areas. This is available as a raster file at a resolution of
3 arc (approx. 100m at the equator).

— NTL captures the level of urbanization of a location [23]
and is complementary to population density. As a result
of lower poverty rates and increased access to health
facilities, malaria risk is indeed lower in urban areas
[24,25]. A 2013 gridded surface of intercalibrated
NTL was obtained from the Geodata portal (geodata.
globalhealthapp.net) at a spatial resolution of 1 km2.
— Rainfall is an important environmental factor that directly
affects the suitability of potential breeding sites for
Anopheles mosquitoes. Here, we use the annual mean
precipitation based on the Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS) [26] at a
5 × 5 km spatial resolution.

— Temperature is known to affect the survival and development
ofP. falciparum fromlarvae intoviable adults. In this analysis,
we consider annual mean temperatures for 2015 at 5.6 ×
5.6 km spatial resolution fromModerate-resolution Imaging
Spectroradiometer (MODIS) sensor was available at the
Land Processes Distributed Active Archive (LP DAAC)
Center (lpdaac.usgs.gov/products/mod11c1v006/).

— Enhanced vegetation index (EVI) acts as a proxy for the
presence of suitable mosquitoes breeding sites. Unlike
other indices of vegetation (e.g. the normalized difference
vegetation index), EVI corrects for some distortions in the
reflected light caused by the particles in the air as well as
the ground cover below the vegetation. Here, we use EVI
imagery data available at approximately 0.25 × 0.25 km
spatial resolution from MODIS.

The different steps of a geostatistical analysis are summar-
ized in table 1. In what follows, each section of the paper
corresponds to a different step presented in table 1. We con-
sider steps 1 to 4 to be an essential component of any
geostatistical analysis. Step 5 is specifically applicable to the
primary objective of this paper, i.e. the assessment of the
impact of covariates for prevalence mapping.
3. Exploratory analysis
An initial exploratory analysis of the data provides useful
insights into the development of a suitable geostatistical
model for prevalence. Here, we focus on two main aspects
of exploratory analysis: (i) assessment of the relationship
between prevalence and covariates; (ii) testing for residual
spatial correlation.

Figure 1 is a point-map showing the sampled locations of
the dataset and their corresponding empirical prevalence.
This plot serves two purposes: it visualizes the spatial cover-
age of the study region; and it gives initial insight into the
spatial pattern of prevalence. We observe that the density of
the sampled locations corresponds in large part to the distri-
bution of the population in Tanzania, with few or no
locations in sparsely populated areas. This feature of the
data will be of particular relevance later in the geostatistical
analysis, as the sparsity of the data affects both the predictive
power of our model and our ability to validate it. In figure 1,
we also observe the presence of locations with an empirical
prevalence greater than 0.57 in the northwest and in the east-
ern part of the country. Many locations with no cases
reported are found in large swathes of inland Tanzania,
especially in the proximity of uninhabited areas.

In order to explore the association of the covariates with
prevalence, we use the empirical logit transformation, defined as

y�i ¼ log
yi þ 1=2

ni � yi þ 1=2

� �
:

The rationale for using the empirical logit is that this matches
the scale onwhich covariates are included as terms in the linear
predictor of a logistic model; the addition of 1/2 to the

http://github.com/giorgilancs/covariates
http://github.com/giorgilancs/covariates
http://www.worldpop.org
http://geodata.globalhealthapp.net
http://geodata.globalhealthapp.net
lpdaac.usgs.gov/products/mod11c1v006/


Table 1. Summary of the steps carried in a geostatistical analysis, highlighting its objectives and the statistical tools used to pursue these. Note that the list of
statistical tools presented in the table is not exhaustive and is limited to those presented in this paper.

step objectives statistical tools

1. Exploratory analysis 1a. Explore the relationship between prevalence and covariates. 1a. Linear splines regression analysis of each

covariate on logit-transformed prevalence.

1b. Assess the evidence of residual spatial correlation. 1b. Empirical variogram and permutation test

for spatial independence.

2. Geostatistical model formulation

and parameter estimation

2a. Specify model assumptions on the spatial correlation and non-

structured over-dispersion.

2a. Inclusion of a spatial Gaussian process and/

or unstructured random effects.

2b. Obtain parameter estimates and measures of uncertainty. 2b. Likelihood function (or posterior density, if

Bayesian inference is used).

2c. Assess overfitting due to an exceedingly large number of

covariates and/or to an over-complex specification of the nonlinear

regression relationship.

2c. Correlation matrix of the regression

parameter estimates.

3. Spatial prediction 3a. Define the predictive target and their spatial scale (e.g. regional

average prevalence).

3b. Carry out predictions for the pre-defined predictive targets and

identify areas of exceedingly high or low risk, depending on the

study objective.

3b. Exceedance probabilities.

4. Model validation 4a. Assess the compatibility of the chosen correlation function. 4a. Empirical variogram.

4b. Assess the calibration of the fitted geostatistical model. 4b. Probability integral transform.

4c. Assess the assumption of conditional independence. 4c. Empirical variogram and permutation test

for spatial independence.

5. Assessment of the contribution

of covariates to spatial

prediction

5. Estimate and carry out predictions for models using subsets of

covariates.

5. Theoretical variograms and summaries of

predictive performance (equations (7.3)

and (7.4)).
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numerator and denominator in the equation above is used to
deal with yi = 0 and yi = ni, for which the standard logit trans-
formation of the empirical prevalencewould yield values plus
and minus infinity, respectively. We emphasize that the use of
the empirical logit is only for exploratory purposes and that
the final geostatistical model should instead be based on a
binomial likelihood, this being the natural sampling distri-
bution for prevalence data. Fitting a linear geostatistical
model to y�i may be a more convenient strategy when p(x) is
close to 0.5 and the ni are large, but in other circumstances
can result in highly biased inferences; see Stanton & Diggle
[28] for details.

We next generate scatter plots for y�i against each of the
covariates (figure 2). In the case of precipitation and popu-
lation, we also take the logarithm of the two covariates in
order to obtain a more approximately linear relationship
with prevalence. We note that all covariates exhibit a very
noisy relationship with the y�i . Regression splines can be
used to obtain a smoothing curve as a better visualization
of the nature of any remaining non-linear relationships. In
our analysis, we fitted these using the ‘mgcv’ package [29],
available in the R software environment. (Its use is illustrated
in the R code available at: github.com/giorgilancs/covariates.)
The resulting curves (see blue lines of figure 2) provide a
useful description of the relationship between the empirical
logit and each of the covariates but are not always easy to
interpret. To overcome this issue, linear splines, i.e. piece-
wise linear functions, also known as broken-stick models,
can be used to account for nonlinear relationships with more
easily interpretable regression parameters.

In our use of linear splines, we aim to capture two differ-
ent types of nonlinear relationships: unimodal, where an
increasing trend is followed by a decreasing one, or vice
versa; or ‘saturation curve’, by which we mean a monotonic
relationship that appears to flatten for increasing values of
the covariate. Both types of relationships can usually be cap-
tured using a linear spline having no more than two knots,
say k1 and k2, formally expressed in a standard logistic
regression as

log
p(xi)

1� p(xi)

� �
¼ b0 þ b1d(xi)þ b2 max {d(xi)� k1, 0}

þ b3 max {d(xi)� k2, 0}: (3:1)

In the above equation, exp{β1} is the multiplicative effect for a
unit increase in d(xi) on the odds ratios, for d(xi) < k1. That
effect then becomes exp{β1 + β2} for k1 < d(xi) < k2 and
exp{β1 + β2 + β3} for d(xi) > k2.

The fitted linear splines are shown in figure 2 by the dashed
red lines, whilst the green lines represent simple linear fits. The
knots of the splines are chosen through a graphical inspection
of figure 2 by placing them in proximity of local maxima of the
smoothing spline (blue lines of figure 2). In the case of EVI,
NTL and precipitation, the estimated regression relationship, as
shown by the red lines, can be described either as a unimodal
or a saturation curve, both of which are scientifically

http://github.com/giorgilancs/covariates
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Figure 1. Map of the 387 sampled locations in Tanzania in the year 2015 obtained from Snow et al. [27]. The grey lines correspond to the boundaries of the 25
regions of Tanzania.
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interpretable. For example, an increase in the levels of urbaniz-
ation, as measured by NTL, is associated with a large decrease
in prevalence, on average, when moving from rural to moder-
ately urbanized areas. However, for values of NTL larger than
10 the relationship flattens, indicating that higher levels of urban-
ization are not likely to bring any further decrease inmalaria risk.
In the case of temperature, values between 25°C and 30°C are
considered optimum for P. falciparum sporogony [30], which
suggests a unimodal effect of temperature on prevalence. The
upper panel of figure 2 does not support this and shows instead
an approximately linear relationship. The apparent inconsistency
may be due to the low number of locations with temperature
higher than 30°C. This may have masked any decreasing trend
at higher temperatures [31], making any extrapolation based on
the green line beyond this range biologically implausible. In
the case of the population density covariate, the observed
relationship is decreasing and approximately linear which can
be explained, similarly toNTL, as a negative association between
urbanization and malaria risk.

The next step of the model-building process is to assess if
the residual variation, i.e. variation that is not captured by the
selected covariates, exhibits evidence of spatial correlation. To
this end, we consider a first extension of the standard gener-
alized linear modelling framework in which the notion of
residual variation is introduced directly into the linear predic-
tors for the log-odds of prevalence. More specifically,
conditionally on a set of independent Gaussian variables Zi,
called random effects, the count yi is now assumed to be the
realization of a binomial distribution, with linear predictor

log
p(xi)

1� p(xi)

� �
¼ d(xi)

`bþ Zi, (3:2)

where d(xi) is a vector of covariates. The model specified in the
equation above belongs to the class of generalized linear mixed
models and accounts for overdispersion, which occurs when the
data yi exhibit greater variation than would be expected under
a standard binomial model. After fitting the model, we extract
the estimates for the Zi, which we denote by Ẑi, and calculate
their empirical variogram to assess whether the Ẑi show any
evidence of spatial correlation.

Let Ẑi and Ẑ j denote the estimates of the random effects
associated with locations xi and xj. The empirical variogram
is calculated by averaging the quantities vij ¼ (Ẑi � Ẑ j)

2=2
within predefined classes of distance, also known as bins.
The empirical variogram is then displayed by plotting the
averaged vij against the mid-points of each distance bin.

Electronic supplementary material 1, figure S2 shows the
resulting empirical variogram for the malaria data, after
removing the effects of temperature, NTL, population, EVI
and precipitation. In the presence of spatial correlation, the
typical shape of the empirical variogram is that of a non-
decreasing function of distance. This is because spatial corre-
lation would make the squared differences vij smaller, on
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average, if xi and xj are closer to each other than if they are dis-
tant. In the absence of spatial correlation, the vij should exhibit
random fluctuations around a constant value. The black line of
electronic supplementary material, figure S2 shows a pattern
that suggests the presence of spatial correlation. However,
this alone does not allow us to conclude that the random effects
show evidence of residual spatial correlation; we need to show
that the black line is indeed highly incompatible with the
absence of spatial correlation. For this purpose, we re-calculate
the empirical variogramof the Ẑi by randomly allocating the Ẑi

to the locations xi, and repeat this 10 000 times. The resulting
10 000 variograms can then be used to construct 95% prob-
ability intervals for the range of the variation in the vij under
the assumption of spatial independence. These are denoted
in electronic supplementary material, figure S2 by the shaded
grey area. The black line falls well outside the 95% envelope,
suggesting that the unexplained variation in prevalence by
the covariates is spatially correlated.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210104

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 J

ul
y 

20
23

 

4. Geostatistical model formulation and
parameter estimation

In the event that we detect spatial correlation, we further
extend the generalized linear mixed model as follows. We
now assume that, conditionally on the Zi and a spatial Gaus-
sian process S(xi), the yi are the realization of a binomial
distribution with linear predictor

log
p(xi)

1� p(xi)

� �
¼ d(xi)

`bþ S(xi)þ Zi: (4:1)

In this paper, we assume that S(x) has an exponential covari-
ance function, with variance σ2. This implies that the
distribution of S(xi), for i = 1,…, N, follows a multivariate
Gaussian distribution, with correlations expressed by

Cor{S(xi), S(x j)} ¼ exp {�uij=f},

where uij is the distance between xi and xj, and ϕ is a scale par-
ameter that regulates how quickly the spatial correlation
approaches zero for increasing distance uij. The exponential
covariance function corresponds to a mean-square continuous
but non-differentiable Gaussian process S(x). It is a special case
of a wider class of covariance functions proposed by Matérn
[32] that include an additional parameter to control the mean-
square differentiability of the Gaussian process S(x). This
additional parameter is hard to estimate and, in our experience,
onlymaterially improves the fit of themodel when the empirical
variogram shows a clear ‘S’ shape over small distances, which is
typical of Matérn covariance functions with k > 0.5.

We assume that the Zi in (4.1) are independent and iden-
tically distributed random variables with mean 0 and
variance τ2. The Zi are called the nugget effect, reflecting the
historical origin of geostatistical methods in the mining
industry. In our context, they can be interpreted as a combi-
nation of non-spatial over-dispersion and spatial variation
on a scale smaller than the smallest distance between any
two data-locations xi. It is impossible to disentangle these
two effects without independently replicated data at coinci-
dent locations. In this paper, we make the pragmatic choice
to exclude Zi from our spatial predictions of prevalence.

In (4.1), the sum S(xi) + Zi represents all of the variation in
prevalence p(xi) that is not attributable to the covariates d(xi).
If all the variables that contribute to the spatial variation in
p(xi) were available as measured covariates, S(xi) would be
redundant.

In the geostatistical analysis illustrated in this paper, we
estimate the model parameters using the Monte Carlo maxi-
mum-likelihood (MCML) method implemented in the
PrevMap package [33]. For more technical details, we refer
the reader to Geyer’s work [34–36] and to Christensen [37]
for an overview of MCML in the context of model-based
geostatistics. Here, we only point out that, unlike Bayesian
methods of inference, MCML avoids the specification of
prior distributions for the parameters of the geostatistical
model—namely β, σ2, ϕ and τ2—by treating these as
unknown constants that are estimated from the data.

Prior distributions are probability distributions that quan-
tify our belief about a model parameter before any empirical
evidence is taken into account. In general, choosing a prior is
not straightforward. In the recent work by Simpson et al. [38]
and Fulgstad et al. [39], a principled Bayesian framework
is developed to define priors that are invariant to
reparametrization and penalize for model complexity. How-
ever, ideally, a prior should be informed by subject-matter
knowledge but translating this into a unique probability dis-
tribution can be very difficult; see §4.2.2 of [40] to see some
examples. In the absence of prior knowledge, a widely used
approach is to define priors with large variances in order to
let the data drive the inference on the model parameters. How-
ever, with this approach the choice of how large the prior
variance should be is often arbitrary. For this reason, in the
context of geostatistical analysis where informative priors are
rarely available, maximum likelihood is our preferred
method of estimation. Against this, an advantage of Bayesian
inference is that it naturally incorporates parameter uncer-
tainty into predictions of prevalence within a single,
principled probabilistic framework. To overcome this limit-
ation, Giorgi et al. [41] propose to use the distribution of the
maximum-likelihood estimator as a ‘quasi-posterior’ distri-
bution for the model parameters, and sample from this to
propagate parameter uncertainty. When comparing this
approach with Bayesian inference and the use of plug-in maxi-
mum-likelihood estimates for prevalence prediction, Giorgi
et al. [41] find only small differences. This is because, in
most applications, the predictive variance of the spatial pro-
cess S(x) dominates the variance of the parameter estimates.

In order to develop a geostatistical model that is more
explicitly informed by knowledge of the disease, it is con-
venient to group risk factors into different domains, each of
which contribute to the transmission of the disease via differ-
ent routes. In the context of malaria, three main domains are
environmental covariates, socio-economic covariates and cov-
ariates relating to the history of control interventions. Let
d j(xi) ¼ d j(xi)

`b j denote the cumulative effect on prevalence
of the risk factors dj(xi) that fall under the j-th domain; we call
these domain effects. We then re-express model (4.1), as

log
p(xi)

1� p(xi)

� �
¼
X
j

d j(xi)þ S(xi)þ Zi: (4:2)

Although the model above is mathematically equivalent to
that in (4.1), the introduction of the domain effects δj(xi) can
help to improve the interpretability of the model in two differ-
ent ways. First, at a pre-analysis stage they provide a rationale
for the identification of suitable covariates. Second, they guide
the variable selection process by requiring each domain to be
represented by at least one covariate in the final model used
for spatial prediction. In our analysis, the identified covariates
provide materially different independent contributions to the
explanation of the spatial variation in disease prevalence.
For this reason, our approach will be to try to retain as
many as possible in the model in order to maximize its
explanatory power while guarding against overfitting.

Overfitting occurs when themodel delivers predictions that
follow too closely the observed values of the outcome. Two
possible causes of this are (1) the inclusion of too many covari-
ates relative to the sample size and (2) the use of an over-
complex regression function to capture nonlinear relationships
between the outcome and the covariates. To detect overfitting,
the most commonly used approach is cross-validation, whereby
a randomly selected subset of the data, also referred to as the
training set, is used to inform predictions at locations of the
remainder of the data, or test set. Then, based on a prediction
error summary, the performance of the model is assessed in
both the training and test sets. In case of overfitting of the
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dashed lines of figure 2.
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data, the prediction error obtained from the test set will be sub-
stantially larger than that obtained from the train set; for more
guidance on how to carry out cross-validation, see §7.10 of
[42]. However, this approach has three main limitations: first,
it does not provide any insights into the possible causes of over-
fitting; second, cross-validation becomes less reliable for smaller
sample sizes; third, most commonly used prediction error sum-
maries treat the observed fraction of positive cases as the true
disease prevalence, which is especially problematic in low
prevalence settings.

To overcome these issues when the goal is to carry out vari-
able selection, we propose an alternative approach based on
inspection of the correlation matrix of the maximum-likelihood
estimates for β. The rationale for this is that, in the presence of
overfitting, the estimates of the regression coefficients β are
less stable and tend to become linearly dependent, resulting
in correlations close to −1 or 1. This allows us to identify
which covariates may be removed from the model and how
nonlinear functions, used to model the relationship of the
outcome with the covariates, may be simplified.

The left panel of figure 3 shows the correlationmatrix for the
estimates of β based on the linear splines, as represented by the
dashed red lines of figure 2. From now on, we shall refer to this
initial geostatistical model as MI . In this graph, the squares
encompass the correlations for all the regression coefficients
used to capture the empirical nonlinear relationship between
prevalence and a single covariate. We observe that most of
the correlations outside of these squares are close to zero,
with the exception of two pairs of coefficients for population
and NTL whose correlations are approximately −0.7. None of
the correlations outside the squares are high enough in absolute
value to justify the removal of any of the covariates. If we now
examine the correlations of the regression coefficients within
each square, we see that, for NTL and precipitation, the esti-
mates have a correlation very close to 1. This strongly
suggests overfitting, indicating that the true nonlinear func-
tional relationship may be difficult to recover as a result of the
noisy empirical associations, as evident from figure 2. In this
case, a possible solution is to fit a simpler linear relationship
for NTL and precipitation. In other cases, where more than
one knot has been used to define the linear spline, a solution
may be the removal of any knot that is close to the minimum
ormaximumvalue of an explanatory variable, where nonlinear
relationships between the covariates and the outcome are
informed by fewer data-points and are therefore less reliable.
We then fit a simplified model where we assume a logit-
linear relationship for NTL and log-precipitation. The right
panel of figure 3, shows that this has reduced the correlations
between the regression coefficients with the largest value
around −0.6. We conclude that this simplified model does
not show evidence of overfitting. In the next section, we con-
sider spatial prediction based on this simplified geostatistical
model, to which we shall refer as MF; see table 3 for a sum-
mary of the covariates and how these are used in the models
MI and MF, respectively. The point estimates and 95% con-
fidence intervals for the parameters of MI and MF are
reported in electronic supplementary material 1, table S1.
5. Spatial prediction
In order to carry out spatial prediction, we first must define
(1) a predictive target, say T and (2) one or more summary
statistics of its predictive distribution, i.e. the probability dis-
tribution of T conditional on all of the observed data.

Let A denote a geographical area of interest and Rk, for
k = 1,…, K, be a set of spatial units forming a partition of
A. In our example, A corresponds to the area encompassed
by the boundaries of Tanzania, while Rk are the K = 26 Tanza-
nian regions. In disease prevalence mapping, two predictive
targets that are often of scientific interest are the spatially con-
tinuous prevalence surface covering the whole of A, i.e.
p(A) = {p(x) : x∈A}, and the regional population prevalence,

p(Rk) ¼
Ð
Rk
w(x)p(x) dxÐ
Rk
w(x) dx

, k ¼ 1, . . . , K, (5:1)

where w(x) is the population density at location x. In order to
compute the target in the above equation, we approximate
each integral by a sum over a regular grid covering Rk. In gen-
eral, the spatial resolution of the regular grid should be fine
enough to make the correlation between values of p(x) in
adjacent pixels at least 0.95 in order to generate an appropri-
ately smooth prevalence surface map for p(x).

The most commonly used summaries of the predictive
distribution of a prevalence surface are maps of its means,
standard errors and selected quantiles for each spatial
unit. However, public health policies are often developed
based on the exceedance, or non-exceedance, of predefined
prevalence thresholds, say l. In these cases, the prediction at
each location or region is expressed as an exceedance
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Figure 4. Left panels: maps of the predicted P. falciparum prevalence (upper panel) and of the exceedance probability for a 0.3 prevalence threshold (lower panel)
on a 10 by 10 km regular grid. Right panels: maps of the predicted average prevalence, weighted by population density, at regional level (upper panel) and the
probability that this exceeds a 0.3 prevalence threshold (lower panel).
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probability (EP), defined as EP(x) = Prob[ p(x) > l|y1,…, yN]
and EP(Rk) = Prob[ p(Rk) > l|y1,…, yN] for location-specific
and spatially aggregated targets, respectively. An EP close
to 1 or 0 indicates near-certainty that the target does or
does not exceed the specified threshold l, whereas an EP
close to 0.5 indicates a high degree of uncertainty.

Another important issue is to assess whether spatial predic-
tions at unsampled locations should be conducted outside the
empirical ranges of the covariates. Electronic supplementary
material 1, S3 shows a 10 by 10 km regular grid covering the
whole Tanzania, after removing locations with no inhabitants
according to the WorldPop (www.worldpop.org) population
density data. Locations in black indicate that the value of at
least one of the covariates at that location falls outside the
empirical range. In this case, extrapolation should be carried
out with caution, especially when the fitted regression relation-
shipsmay follow trajectories that are not supported by scientific
knowledge of the phenomenon under investigation.

Figure 4 shows the predicted prevalence and the EP for a
0.3 threshold over the regular grid (left panels) and at
regional level (right panels). The regional-level estimates are
obtained by using population density as the weighting func-
tion w(x). We identify areas that are highly likely to exceed 0.3
prevalence in the northwest and southeast of the country,
where the EP is at least 80%. Large swathes of the central
areas of Tanzania have instead estimated prevalences below
20% and EPs no more than 20%, indicating a low probability
of exceeding a 0.3 threshold. The predictions at regional level
mask the spatial variation observed over the grid locations.
The largest estimated prevalence is about 0.47 in the North-
Western region of Geita. In the lower right panel of figure 4,
we see that overall three districts in Tanzania have an EP of
at least 80% of a exceeding a 0.3 threshold.

6. Model validation
The next step of the geostatistical analysis concerns three
aspects of the validation of a fitted geostatistical model: (a)
compatibility of the chosen covariance function with the
data; (b) calibration of the predictive distribution of

http://www.worldpop.org
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prevalence; (c) validation of the assumption of conditional
independence.

To pursue (a), we use a Monte Carlo procedure based on
the empirical variogram. We first simulate a large number of
binomial datasets under the fitted model, say 10 000. For each
of these, we fit the model in (3.2) to obtain our estimates Zi

and the vij ¼ (Ẑi � Ẑ j)
2=2. The resulting 10 000 variograms

are used to compute 95% probability intervals at each of
the distance bins. If the variogram obtained from the original
data falls within the resulting envelope we conclude that the
chosen spatial correlation function gives a suitable model.
Using this approach in our application, we conclude that the
assumed exponential spatial correlation is supported by the
data, as evidenced by electronic supplementary material 1,
figure S4. Failure of this diagnostic check could indicate
misspecification of the covariance function or incorrect omis-
sion of the nugget effect Zi in (4.2). These and other
examples are shown in §4.3 of Diggle & Giorgi [40]. Note,
however, that the 95% probability intervals shown in electronic
supplementary material 1, figure S4 are wide, indicating low
statistical power to reject the model; in our experience, rejection
of the correlation function based on the outlined Monte Carlo
approach is more likely to occur at smaller distance bins of the
variogram, where the test is more powerful.

For the assessment of themodel calibration (b),we adapt the
probability integral transform for count data proposed by
Czado et al. [43] to binomial geostatistical models. The details
and application of this approach are described in electronic
supplementary material 1, §1. In brief, this consists of the
following steps.

1. Randomly split the dataset into a training and test set.
2. Obtain the predictive distribution of prevalence at the

locations of the test set, based on the fitted geostatistical
models.

3. Apply the probability integral transform (defined in
equation (3) of electronic supplementary material 1) to
the observed positive counts of the test set.

4. Assess through the cumulative density function whether
the transformed data from the previous step follow a
uniform distribution.

One of the main advantages of this approach over cross-
validated prediction error summaries, such as the mean
square prediction error, is that it does not rely on treating
the fraction of positive cases as if it were the true prevalence.
Also, the use of the probability integral transform allows us
to assess the overall compatibility of the predictive distri-
bution of prevalence with the data, rather than just its
mean. The results reported in electronic supplementary
material do indicate that MF is a well calibrated model. For
other approaches to the predictive assessment of count
data, we refer the reader to Czado et al. [43].

Finally, for the third objective (c), we first compute
Pearson’s residuals, defined as

ei ¼ (yi � ni p̂(xi))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni p̂(xi)(1� p̂(xi))

p ,

where p̂(xi) is the mean of the predictive distribution of
prevalence at location xi, for i = 1,…, n. We then compute
the variogram based on ei and generate the 95% confidence
envelope using the permutation test, described above. The
results are displayed in electronic supplementary material,
figure S6 and show no evidence of residual spatial corre-
lation in the residuals ei, which thus support the
assumption of conditional independence.
7. Assessment of the contribution of covariates
to spatial prediction

We now assess the contribution of the domain effects, δj(xi),
to the prevalence predictions.

To this end, we first fit and carry out spatial prediction for
the following four geostatistical models, each of which con-
siders a subset of the covariates used in the full model.

—M0: the model that excludes all covariates and relies
exclusively on the spatial process S(xi) to interpolate
p(xi).

—ME: the model that only includes environmental variables,
i.e. EVI, temperature and precipitation.

—MSES: the model that only includes socio-economic-status
variables, i.e. population density and NTL.

—MF: the full model.

The parameter estimates for each of these models are
reported in electronic supplementary material, tables S2
to S5.

We then compare the models to assess how the introduc-
tion of covariates affects (i) the spatial structure of the
unexplained variation in prevalence S(xi) + Zi, (ii) the
point estimates of prevalence and (iii) the exceedance
probabilities (EPs).

To carry out (i), we examine changes in the estimates of
σ2, ϕ and τ2 through a graphical inspection of the theoretical
variograms from the four fitted models. When using an
exponential correlation function, as in our application, the
theoretical variogram is

t2 þ s2(1� exp {�u=f}):

Plugging the maximum-likelihood estimates into the above
equation, gives the four variograms shown in electronic
supplementary material, figure S5. This clearly shows that
the introduction of covariates leads to smaller estimates
for σ2, larger values for ϕ but does not materially change
the estimate of the nugget variance τ2. The practical range,
i.e. the distance that gives a spatial correlation of 0.05,
obtained from MSES is closer to MF than to the other two
models, suggesting that socio-economic variables explain
spatial variation on a smaller scale than environmental
covariates.

To quantify the impact of the covariates on the spatial
predictions of the predictive target, we consider two sum-
maries defined for both spatially continuous and spatially
aggregated predictions.

The first summary quantifies how similar are the preva-
lence predictions from M0, MSES and ME compared with
the full model MF, using the root-mean-integrated-square-
error (RMISE) criterion,

RMISEC ¼ 1
jAj
ð
A
{ p̂Mi

(x)� p̂MF
(x)}2 dx

� �1=2

, (7:1)

where p̂MF
(x) and p̂Mi

(x) are the point predictions of p(x)
from MF and Mi, for i = 0, SES or E. Values of RMISEC

close to 0 indicate that model Mi delivers predictions that



Table 2. Summaries quantifying the contribution of the covariates to
spatial prediction. The summaries RMISEC and RMISER quantify the
discrepancy of the point predictions of prevalence between M0, ME and
MSES with the full model MF . The summaries IC and IR quantify how
close the exceedance probabilities generated from a model are to 0 or 1.
The interpretation of the summaries is explained in the main text.

model

index M0 ME MSES MF

RMISEC 0.027 0.026 0.013 —

RMISER 0.176 0.181 0.046 —

IC −1397.012 −1491.385 −1394.219 −1443.877
IR −6.002 −6.178 −5.754 −5.998

Table 3. Equations of the relationships between covariates and prevalence
that are fitted in the simulation study under the true model (Mi) and
the misspecified model (MF ). To keep the mathematical notation simple,
each covariate is denoted identically as d(x) and regression coefficients are
omitted in each equation. Note that d(x) + max{d(x)− c, 0} denotes a
linear spline with a single change point at d(x) = c.

covariate MI MF

temperature d(x) d(x)

EVI d(x) + max{d(x)

− 0.35, 0}

d(x) + max{d(x)

− 0.35, 0}

NTL d(x) + max{d(x)− 9, 0} d(x)

log-population d(x) d(x)

log-precipitation d(x) + max{d(x)− 6.85, 0} d(x)
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are closer to the full model MF. Similarly, for the spatially
aggregated estimates p(Rk) in (5.1), we compute

RMISER ¼ 1
K

XK
k¼1

{ p̂Mi
(Rk)� p̂MF

(Rk)}
2

 !1=2

(7:2)

which we interpret in analogous fashion to RMISEC.
To assess the impact of the covariates on the EPs, we pro-

pose a summary index that quantifies how well a fitted
model is able to discriminate between areas that are above
and below a given threshold. Hence, the summary should
penalize models that give EPs closer to 0.5 and favour
models with EPs closer to 0 or 1. For the spatially continuous
EPs, this can be achieved using the following index:

IC ¼ �
ð
A
(EPMi (x)� 0:5)2 dx: (7:3)

Similarly, for the EPs of the spatially aggregated average
prevalence

IR ¼ �
XK
k¼1

(EPMi (Rk)� 0:5)2: (7:4)

As both IC and IR can only take negative values, these two
indices are close to 0 when the EPs are close to 0.5. Conver-
sely, IC and IR will give large negative values for EPs that
are closer to 0 or 1.

In our application, we approximate the integrals in (7.1)
and (7.3) using the 10 by 10 km regular grid shown in elec-
tronic supplementary material, figure S3. The values of the
proposed summaries for each model are reported in table 2.
Regarding the spatially continuous predictive inferences, we
observe that MSES gives prevalence predictions that are
closer to MF than the other models. The same is also
observed for the regional predictions of the average preva-
lence. The model that gives a better discrimination of areas
above and below a 0.5 prevalence threshold is ME but,
when considering regional-level EPs, all the models
considered give similar performances.

We conclude that, in this example, NTL and population
density are mostly driving the predictions of prevalence in
the final model, both on a continuous and regional scale.
Environmental variables help to better discriminate between
areas above and below a 0.3 prevalence threshold on a
spatially continuous scale. However, according to the EPs
of spatially aggregated prevalences at regional-level, the
inclusion of covariates does not improve the discrimination
between spatial units that exceed and do not exceed 0.3.
7.1. Further insights into the impact of covariates
through a simulation study

We carry out a simulation study in order to gain further insights
into the impactonspatial predictionarising from: (1) themisspe-
cification of the relationship between covariates and prevalence;
(2) the omission of important covariates.

In our simulations, we use MI as the true model for
generating simulated datasets. We then compare the perform-
ance of the true model MI with MF, which misspecifies the
relationships with NTL and precipitation, and with a model
that does not use any covariates, denoted by M0; see table 3.

The simulation proceeds through the following iterative
steps.
1. Simulate the true prevalence under MI at the observed
locations (figure 1) and over the 10 by 10 km regular
grid (electronic supplementary material 1, figure S3).

2. Based on the simulated prevalence at observed locations
in the previous step, simulate a binomial dataset for the
number of malaria cases.

3. Fit models MI , MF and M0 to the simulated dataset in
the previous step.

4. For each of the three fitted models, carry out spatial pre-
dictions for prevalence over the 10 by 10 km regular
grid and at regional level.

5. Repeat steps 1 to 4, 1000 times.

On completion of these steps, we summarize the perform-
ance of MI , MF and M0, through summaries at both pixel-
level and regional-level. We quantify the prediction error
from the three models using the RMISE as defined in the pre-
vious section, replacing p̂MI

(x) in (7.1) and p̂MI
(Rk) in (7.2)

with the true prevalences obtained in step 1. We then
denote these two summaries as RMISET

C and RMISET
R,

respectively. To quantify the accuracy of the classifications
of both pixels and regions based on the EPs, we first optimize
the sensitivity and specificity of each model and average
these two across the 1000 simulations, as follows. For each
simulated dataset, we use the simulated true prevalence,
both at pixel-level and regional-level, to label each pixel



Table 4. Results of the simulation study for the true model MI , the
misspecified model MF and the model excluding all the covariates M0.
The covariates used in MI and MF , and their relationship with
prevalence are defined in table 3. For a definition of the summaries, see
the main text.

model

summary MI MF M0

RMISETC 0.105 0.129 0.151

SpecC 0.890 0.929 0.899

SensC 0.936 0.762 0.927

RMISETR 0.034 0.039 0.056

SpecR 0.977 0.998 0.899

SensR 0.989 0.585 0.717
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and region as being above or below the threshold of 0.3
prevalence. Based on the fitted geostatistical model, we
then compute the EPs of 0.3 prevalence and find the value
of EP that gives the largest sensitivity and specificity for the
classification of pixels and regions. In reporting the results,
we use SensC and SpecC denote the sensitivity and specificity,
respectively, at pixel-level, and SensR and SpecR similarly at
regional-level.

The results of the simulation study are reported in table 4.
The true model MI yields the smallest RMISE for both the
regional and spatially continuous predictions. The predictive
performance of the misspecified model MF in terms of
RMISE is not materially different from that of the true
model for both continuous and regional targets. However,
the misspecified relationship leads to a substantial decrease
in the sensitivity of the model to detect areas above a 0.3
prevalence. The model without covariates, M0, has a
higher RMISE than the other two models but also a substan-
tially higher sensitivity than MF. This illustrates the general
point that model choice needs to be considered in relation
to the purpose of the modelling.
8. Discussion
In this paper, we have introduced a framework for the geo-
statistical analysis of spatially referenced prevalence data
and have illustrated the different stages of the analysis
using a case study on malaria mapping in Tanzania. The
aim of this framework is to guide researchers to make mod-
elling choices that enhance the predictive or explanatory
power of the model depending on the primary objective of
the analysis. For each step of a geostatistical analysis,
we have proposed the use of statistical tools to address
specific modelling objectives. We emphasize that the list
of statistical tools presented in table 1 is not exhaustive
and alternative solutions are also possible. Below, we
further consider the strengths and limitations of our
proposed methods.

The models presented in this paper did not explicitly
account for the stratification of the DHS-MIS2015 conducted
in Tanzania. In electronic supplementary material 2, we
revisit the final model, namely MF, and incorporate
the strata variables provided by the DHS-MIS2015, corre-
sponding to the urban and rural strata for each of the
regions of Tanzania. The results suggest that the inclusion
of population density, NTL and the spatial random effects
S(x) adequately adjust for the urban/rural stratification,
thus making the inclusion of the design-based variables
unnecessary. However, we emphasize that this result cannot
be generalized and the importance of stratification variables
should be assessed in any geostatistical analysis. As
explained in §2 of Giorgi et al. [41], failing to account for
the stratification of the design can lead to a stochastic depen-
dence between the sampling design and the underlying
spatial process—also known as preferential sampling—which
can invalidate the predictive inference on prevalence. In
the context of vaccination coverage estimation, Dong &
Wakefield [44] have carried out a thorough study on the
importance of design variables into geostatistical models,
showing that modelling survey stratification and clustering
improves the predictive performance of geostatistical
models. Previous studies that used geostatistical models for
disease mapping did not account for the sampling design
explicitly (e.g. [45–48]), but made extensive use of covariates
that are correlated with the urban and rural strata and may
therefore be sufficient to adjust for the stratification of the
design.

The problem of accounting for the sampling design has
been extensively investigated in the field of small area
estimation, or SME (e.g. [49–51]). SME models are spatially
discrete models that are used to analyse areal-level out-
comes and borrow strength of information across space by
defining a spatial correlation structure based on neighbour-
ing properties. SME methods thus provide an alternative
approach to model-based geostatistical methods when the
goal of the analysis is exclusively focused on making pre-
dictive inferences on disease risk at district-level. The
recent study by Utazi et al. [52] compared the predictive
performances of SME and model-based geostatistical
models, and found that the latter deliver equally reliable
areal-level estimates of prevalence. However, as highlighted
by Paige et al. [53], district-level estimates based on geosta-
tistical models require the availability of high-quality
population density surfaces for the computation of areal-
level prevalences (see equation (5.1)) and should, in
principle, also be stratified according to the design.
Nevertheless, model-based geostatistical methods provide
principled, likelihood-based solutions to questions that
cannot be addressed with SME methods, including the abil-
ity to combine data at multiple spatial resolutions and to
carry out spatial aggregation at whatever level is relevant
to a given health policy question.

Another important topic that we did not cover in this paper
is the handling of large spatial datasets, which can substan-
tially increase the computational burden. For an overview of
some of the current methodologies that are used to approxi-
mate a Gaussian process, we refer the reader to ch. 3 of
Diggle & Giorgi [40]. Among these, the approximation based
on stochastic partial differential equations (SPDE), proposed
by Lindgren et al. [54], is one of the most commonly used,
especially in conjunction with Bayesian inference [55].

In order to guide the model-building process, we have dis-
tinguished between the predictive and explanatory power of
the model. The balance between the two should depend on
the objectives of the analysis. In our data example on malaria



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210104

13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 J

ul
y 

20
23

 

mapping in Tanzania, the objective was to identify areas of
high transmission, defined as exceedance of a 0.3 prevalence
threshold. Among themodels considered,MI , which included
both environmental and socio-economic risk factors as covari-
ates, had the strongest explanatory power. However, our
results indicated that some of the regression coefficients of
the linear splines were poorly identified and proposed a sim-
plified model, MF, which incorporated most covariates as
linear effects into the linear predictor. From a predictive mod-
elling perspective, when considering models that use subsets
of the covariates inMF, we found that the full modelMF deliv-
ered only a marginally better performance than those. Also,
we found that some covariates helped to improve the accuracy
of the point predictions of prevalence but were not as useful in
increasing the sensitivity and specificity of the model with
respect to the identification of pixels and regions that exceeded
a 0.3 prevalence threshold. Furthermore, our simulation study
showed that a model that misspecified the relationship
between the covariates and prevalence performed as well as
the true model in terms of the root-mean-square-error, but
had a substantially lower sensitivity in the identification of
areas above 0.3 prevalence. We point out that these findings
are dependent on both the properties of the underlying spatial
process and the prevalence threshold used for the exceedance
probabilities, hence they are not generalizable to other geosta-
tistical analyses.

We have shown that linear splines can help to account for
non-linear relationships between covariates and disease
prevalence, and to explain covariate effects through easily
interpreted regression coefficients. We have also introduced
the concept of domain effects in order to inform the variable
selection process and the validation of the model. When con-
sidering a larger number of covariates than those used in our
example, a reduction of the dimensionality could be achieved
by combining all the covariates within each domain using, for
example, principal component analysis. However, in this
case, the explanatory power of the model would rely on inter-
pretability of the principal components, which may be
problematic.

In our framework, validation of the assumed correlation
function is carried out through a Monte Carlo procedure
based on the empirical variogram. Two limitations of this
approach are: the validity of the diagnostic relies on the
assumption of stationary and isotropy; the statistical power
to reject a chosen correlation function is often low. The
second issue is related to the wider problem that prevalence
data are only weakly informative of the smoothness of the
underlying spatial process, which can result in highly uncer-
tain estimates of the covariance parameters. Development
of more statistically efficient tools for the diagnostic of
correlation functions for count data requires more research.

To assess over-fitting, we have proposed the use of the cor-
relation matrix as an approach for exploring overfitting and
identify solutions for avoiding over-complex and poorly esti-
mated regressions relationships. We emphasize that this
approach cannot be used to assess the relative importance of
covariates but only how well the regression relationships of
the model are estimated. In our analysis of the Tanzania
malaria data our initial geostatistical model did showevidence
of overfittingwith correlations close 1 andwe therefore simpli-
fied themodel by removing knots of the linear splines at points
where the datawere sparse. However, it is difficult to provide a
single, universal threshold value for the correlation that can be
applied to identify overfitting. Our view is that decisions on
how to define regression relationships should also rely on sub-
ject matter knowledge and not exclusively on statistical
judgement. For this reason, models that have more scientific
validity but are less precisely estimated may also be favoured
in some contexts.

In our example, information on the minimum and maxi-
mum age of the sampled individuals at each location was
also available. However, we did not find any discernible
relationship of these with the empirical prevalence and there-
fore discarded them from the analysis. When analysing
aggregated disease counts data, an alternative approach to the
standardization of prevalence maps to specific age groups
is to define weights w(x) in (5.1) based on the age-stratified
population density at location x.

In studies where the primary goal is to understand the
relationship between risk factors and disease risk, rather
than geostatistical prediction, some modifications to the fra-
mework we have illustrated may be needed. For example, a
model for disease prevalence may be first developed by
considering only covariates that are known to confound
the relationship between disease risk and the variables
that are of primary scientific interest. These are then intro-
duced in the model after restricting the variable selection
process, as described in this paper, to the confounding
factors. Covariates of scientific interest should then be
kept in the final model, regardless of their statistical signifi-
cance. Confidence intervals for the estimated regression
relations can instead be used as a way of conveying the
strength of the association between the covariates and
disease risk.

Finally, we point out that the statistical ideas and
principles presented in this paper are applicable to any stat-
istical analysis of epidemiological data based on regression
modelling. This also includes extensions of the standard
geostatistical model for prevalence mapping to spatio-
temporal analysis, modelling of zero-inflated prevalence
data, combining data from a mix of randomized and
opportunistic surveys [56,57] and multiple diagnostics [58].
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