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Abstract 

Background: There is an increasing need for finer spatial resolution data on malaria risk to provide micro‑stratifi‑
cation to guide sub‑national strategic plans. Here, spatial‑statistical techniques are used to exploit routine data to 
depict sub‑national heterogeneities in test positivity rate (TPR) for malaria among patients attending health facilities 
in Kenya.

Methods: Routine data from health facilities (n = 1804) representing all ages over 24 months (2018–2019) were 
assembled across 8 counties (62 sub‑counties) in Western Kenya. Statistical model‑based approaches were used to 
quantify heterogeneities in TPR and uncertainty at fine spatial resolution adjusting for missingness, population distri‑
bution, spatial data structure, month, and type of health facility.

Results: The overall monthly reporting rate was 78.7% (IQR 75.0–100.0) and public‑based health facilities were more 
likely than private facilities to report ≥ 12 months (OR 5.7, 95% CI 4.3–7.5). There was marked heterogeneity in popu‑
lation‑weighted TPR with sub‑counties in the north of the lake‑endemic region exhibiting the highest rates (exceed‑
ance probability > 70% with 90% certainty) where approximately 2.7 million (28.5%) people reside. At micro‑level the 
lowest rates were in 14 sub‑counties (exceedance probability < 30% with 90% certainty) where approximately 2.2 
million (23.1%) people lived and indoor residual spraying had been conducted since 2017.

Conclusion: The value of routine health data on TPR can be enhanced when adjusting for underlying population 
and spatial structures of the data, highlighting small‑scale heterogeneities in malaria risk often masked in broad 
national stratifications. Future research should aim at relating these heterogeneities in TPR with traditional commu‑
nity‑level prevalence to improve tailoring malaria control activities at sub‑national levels.
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Background
The highest public health burden posed by infection 
with Plasmodium falciparum continues to be borne 
by countries in sub-Saharan Africa (SSA) [1]. Infection 
prevalence and disease risks remain unevenly distributed 
between and within countries [2, 3]. This spatial hetero-
geneity requires strategies that facilitate targeting of lim-
ited resources for malaria control, as outlined in WHO’s 

Global Technical Strategy (GTS) for malaria [4] and the 
High Burden-High Impact (HBHI) initiative [5]. Cur-
rent national malaria strategic plans in SSA use a variety 
of metrics to depict sub-national variations in malaria 
risk ranging from modelled community-based parasite 
prevalence to crude estimates of clinical incidence from 
routine data [6]. The main challenge for National Malaria 
Control Programmes (NMCPs) is in using all available 
data, effectively, to provide robust malaria risk maps that 
can guide micro-stratification.

Malaria routine data from District Health Informa-
tion System 2 (DHIS2) summarized as test positivity 
rate (TPR) among patients attending health facilities is a 
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simple metric, providing a means for micro-stratification 
and targeted responses [7–13]. Compared to cross-sec-
tional community-based surveys of infection prevalence, 
TPR is more ubiquitous in time and space because data 
are collected continuously and across all treatment facili-
ties in a locality.

Traditionally, NMCPs define TPR as a ratio of aggre-
gated number of confirmed cases over parasitological 
tests undertaken within a single administrative unit. Such 
an approach does not adjust for: (a) the spatial and tem-
poral heterogeneities in the data at a more granular scale; 
(b) the populations who would use health facilities at the 
borders of administrative units; or, (c) missingness of the 
reported data by health facility. Importantly, NMCPs 
rarely consider uncertainty related to indicator estima-
tion, which are important metrics for decision-making 
when choosing between malaria strategies [12, 14–18].

Here, the aim was to provide an example of quantify-
ing the spatial heterogeneities in TPR using a Bayesian 
model-based framework [19, 20] adjusting for data miss-
ingness, spatio-temporal dependencies and population 
density at fine-scale to guide malaria micro-stratification 
in Western Kenya.

Methods
Study setting
The present study used routine health facility data from 
8 counties in Western Kenya: Bungoma, Busia, Homa 
Bay, Kakamega, Kisumu, Migori, Siaya, and Vihiga. These 
counties represent devolved administrative units respon-
sible for making sub-national decisions on the provision 
of health care, including malaria, and are administratively 
sub-divided into 62 sub-counties (Fig.  1). The NMCP 
provides overall national malaria policies, strategic direc-
tion and coordinates bi-lateral and multi-lateral support 
for national malaria control while counties are expected 
to adapt national policies to their local epidemiological 
context [21].

The 8 Lake-endemic counties (Fig. 1) cover 19.4% (9.4 
million people) of Kenya’s population [22]. The area expe-
riences two rainy seasons, March to May and October to 
December; malaria transmission is intense throughout 
the year with community-based Plasmodium falcipa-
rum prevalence among children exceeding 30% in 2009 
[23], and with the highest rates of malaria transmission 
in Kenya in 2015 [18]. Transmission is maintained by 
high biting rates from local vector populations including 
Anopheles funestus sensu stricto (s.s), Anopheles arabien-
sis and Anopheles gambiae s.s. [24, 25].

Between 2016 and 2019, 1.1 million long-lasting insec-
ticide-treated nets were distributed routinely (antenatal 
clinic clients) across the 8 counties. Since 2017, there 
have been 3 rounds of indoor residual spraying (IRS) 

in Homa Bay and Migori counties using Actellic 300 
CS and SumiShield 50 WG [26]. In September 2019, 23 
sub-counties in Western Kenya were randomly allocated 
to receive the Food and Drug Administration (FDA)-
approved RTS,S/AS01 (RTS,S) vaccine and form part of 
an ongoing evaluation of safety and effectiveness [27].

Routine malaria data from DHIS2
An aggregate of monthly outpatient malaria cases rep-
resenting presentations among all ages to public and 
private health facilities was obtained from the DHIS2. 
Data were assembled for 24 months from January 2018 to 
December 2019. DHIS2 is the electronic routine health 
data platform for reporting, analysing and disseminating 
data for health programmes, piloted in 2010 and rolled 
out national-wide in Kenya in 2011 [28, 29]. Health facili-
ties comprised of level 4 or level 5 (hospitals), level 3 
(health centres) and levels 2 and 1 (primary care facilities 
or dispensaries) [30].

Recent evidence shows that over 90% of suspected 
malaria cases are subjected to a malaria parasitologi-
cal test in Western Kenya [31]. Malaria rapid diagnostic 
tests (RDTs) were introduced to scale-up fever testing 
of all age groups in 2012 in Kenya [32]. The focus of the 

Fig. 1 Distribution of health facilities in the study area
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present analysis was on the monthly aggregated num-
ber of patients suspected for malaria (the denominator) 
and the number of cases of positive RDT or blood slide-
confirmed malaria cases (the numerator), excluding fol-
low-up visits and referrals, resulting in a TPR. It was not 
possible to identify the 10% fevers clinically diagnosed 
from the aggregated monthly data. Thus, the definition 
of TPR is not the strict definition of fever test positiv-
ity rates used as a historical metric of malaria risk that 
aimed to test all fevers [33, 34], but a suspected malaria 
TPR, based on service provider perceptions of probable 
malaria.

Population data
Fine spatial resolution, 1-km gridded population data 
for Western Kenya was derived using the 2019 national 
census data available at sub-county levels [22], and dis-
tributions of populations at enumeration area (EA) levels 
used during the 2009 census as input data. Standardized 
dasymetric distributions were used to allocate population 
density weights using a random forest (RF) model [35]. 
The modelled EA population distribution was projected 
to 2019 using 2009–2019 inter-censual growth rates and 
matched to 2019 sub-county census population esti-
mates. Population adjustments were modelled based on 
land cover using the RF model to provide a continuous 
1-km gridded estimate of population in 2019 map (Addi-
tional file 1).

Data pre‑processing and geo‑referencing
DHIS2 data completeness was checked based on the 
number of facility monthly reports recorded out of the 
expected number of facility-month reports. The expected 
number of reports was calculated from the universe of 
public and private facilities in the 62 sub-counties. The 
master health facility list of operational facilities, had 
been geocoded to provide spatial locations, described 
elsewhere [23, 36].

A hierarchical space–time geostatistical analysis of TPR
The geographic coordinates of the health facility com-
bined with data indexed in time (month) allowed the 
prediction of TPR using a hierarchical Bayesian space–
time modelling context adjusting for three broad levels 
of service provision (hospitals, health centres and dispen-
saries or clinics). The interest was to define the underly-
ing spatial–temporal process of TPR. Since a universe of 
all facilities was available and geocoded, the space–time 
analysis aimed at predicting TPR in space at 1 km × 1 km 
pixels to match population distribution. This scale was 
used, rather than county or sub-county, to allow for the 
fact that facilities are located on administrative bounda-
ries serving more than one administrative population and 

assumes that if a facility was located at each grid it would 
have TPR properties to those most proximal and tem-
poral (month) to existing, reporting facilities. Fine-scale 
(1 km × 1 km) TPR predictions were then aggregated as 
the average, population-weighted area estimates at the 
sub-county level.

To predict gridded estimates of TPR, the methodology 
exploits the spatial and temporal autocorrelation in out-
patient case counts to predict the missing or unsampled 
values as weighted linear combinations of the data points 
close in space–time. Thus, using the health facility spa-
tial location si(si = 1, ..., n) , the corresponding number of 
people visiting the health facility suspected with malaria 
N (si, t) , month (time) t(t = 1, ...,T ) and the number con-
firmed malaria cases y(si, t) , the modelling framework 
translates the discretised observations to a prediction of 
TPR. The important aspect of hierarchical Bayesian for-
mulation is linking the observational data model to latent 
processes (the spatio-temporal process and the param-
eters). A binomial likelihood was used (data likelihood), 
combined with prior information containing uncertainty 
in the data generating process resulting in a posterior 
probability distribution. The data likelihood function for 
observational data given the linear predictor η(s, t) was 
defined as:

 where η(s, t) = logit(P(s, t)) . The spatio-temporal pro-
cess, defined on the linear predictor as:

 where α0 is an intercept and for a generic location s, 
X(s, t) is a set of covariates associated with health facil-
ity (the type of facility type and year) and β are the cor-
responding regression parameters. w(s, t) is a mean-zero 
spatio-temporal process and e(s, t) are i.i.dN

(

0, σ 2
e

)

 and 
independent of other processes. The error  term e(s, t) is 
the residual adjustment to the spatio-temporal explana-
tion. With t = 1, 2, ...T , γ (t) represent monthly variables 
adjusting for seasonality specified using first-order ran-
dom walk. Missing data were imputed in space–time 
adjusting for facility type in a similar way to other data 
points.

Modelling was implemented using the Integrated 
Nested Laplace approximation (INLA) R-statistical pack-
age [37]. R-INLA uses both analytical approximation and 
numerical integration to perform approximate Bayes-
ian inference for the class of latent Gaussian models, 
such as the spatio-temporal models [38]. The geostatis-
tical implementation in R-INLA was implemented via 
the space–time stochastic partial differential equation 
(SPDE) approach [39]. The Bayesian specification was 

y(s, t)|η(s, t) ∼ Binomial(N (s, t),P(s, t))

η(s, t) = α0 + X(s, t)
′

β + w(s, t)+ γs(t)+ e(s, t)
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completed by assigning prior distribution for param-
eters of the random walk using the penalized complexity 
prior [40], SPDE, and fixed effect (flat priors) (Additional 
file 2).

Micro‑stratification using exceedance probability
Micro-stratification within counties is a priority for 
the county Ministries of Health, to set priorities for 
malaria control investment. However, a degree of cer-
tainty is necessary to set priorities [16, 17]. As such, 
exceedance probabilistic methodology [14, 15] was 
used on the fitted population-weighted model for TPR. 
This probabilistic estimate identified locations where 
pc(s, t) = P{η(s, t) > l} with l as the threshold level of 
interest. A threshold of > 70% population weighted TPR 
represented high burden sub-counties (or the 10% sub-
counties with highest TPR), while < 30% represented sub-
counties with low malaria risk. In previous studied 30% 
TPR was associated with low malaria prevalence esti-
mated from community survey data [41, 42]. Thus, areas 
where pc(s, t) was closer in value to 100%, indicated the 
likelihood of location to be above the threshold l . Con-
versely, when pc(s, t) value was close to 0% indicated an 
increased likelihood of being below the threshold. For 
pc(s, t) equal to 50% corresponded to sub-counties with 

the highest uncertainty, with an equal probability below 
or above the threshold l .

Model validation procedures
Cross-validation techniques were used to evaluate the 
predictive performance of the model. This was based 
on a 20% sub-set of data selected randomly and used in 
the computation of prediction error metrics namely: the 
mean absolute error, the mean prediction error (MPE), 
mean absolute error (MAE), the root mean square error 
(RMSE), and a Pearson’s product-moment correla-
tion coefficient that quantified the association between 
observed and predicted values.

Results
Data coverage and reporting rate
Figure  2 provides a summary of assembled data by the 
type of health facility among the expected 1804, includ-
ing 150 hospitals, 309 health centres and 1345 dispensa-
ries and clinics. Only 160 health facilities (8.9%) did not 
report any data for the 24  months, with 147 being the 
lowest level of facility (dispensaries or clinics). The over-
all monthly reporting rate for the data period was 78.7% 
(IQR 75.0–100.0); 1339 (74.2%) facilities reported data for 
18/24 or more months, 264 (14.6%) reported for at least 

Fig. 2 Malaria data summary for the 8 counties
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12  months, and 41 (2.3%) facilities reported data to the 
DHIS2 for 6 months or less. Analysis suggested that pub-
lic-based health facilities were more likely than private 
facilities to report ≥ 12 months (OR 5.7, 95% CI 4.3–7.5), 
and dispensaries or clinics had lower odds of reporting 
≥ 12 months (OR 0.4, 0.3–0.7). Lastly, there was no dif-
ference in TPR by age in the DHIS2 (for under-5  years 
47.4% 95% CI 45.9–48.9 compared to the over-5  years 
47.8% 95% CI 46.2–49.2, respectively). Therefore, all sub-
sequent analysis of TPR was aggregated for all ages.

A total of 6.0 million outpatient malaria cases were 
confirmed at health facilities among 12.8 million sus-
pected malaria outpatient cases over 24  months. The 
24-month mean for hospitals was 688 confirmed cases 
compared to 309 cases at primary-level facilities over 
the 24 months. The number of confirmed cases varied by 
month ranging from 0.2 million confirmed cases among 
0.6 million suspected cases in December and highest in 
July, 0.8 million confirmed among 1.7 million suspected.

TPR model sensitivity analysis
Model validation was assessed using the MAE as well as 
an assessment of prediction performance based on the 
20% validation sample. The MPE summarizing the dif-
ference between predicted and observed values was 0.01 
while the MAE was 0.12 and the RMSE 0.2. Pearson’s cor-
relation between observed and predicted values was 0.64 
(p < 0.0001). The analysis of residuals showed minimum 
spatial autocorrelation after modelling as depicted in the 
semi-variogram of the residuals. The residual variogram 
was within the 95% interval suggesting that the spatial 
structure in the data was accounted for by the space–
time modelling (Additional file  2). The model spatial 
range was approximately 20.7 km (95% Bayesian credible 
interval in km 16.4–25.7). Additional file 2: Table S2 lists 
the posterior summaries of the parameters of space–time 
modelling representing the fixed effects and the temporal 
and spatial parameters. From these parameters, adjust-
ing for the year of data point and facility type (level) was 
important in the model estimation at the 95% Bayesian 
credible interval.

Spatial heterogeneity in TPR at sub‑county level
Figure 3a shows the crude aggregated TPR, compared to 
Fig.  3b which shows the modelled population weighted 
TPR for each of the 62 sub-counties. Both crude and 
adjusted sub-county TPRs highlight the marked hetero-
geneity across the region. The crude estimates, however, 
do not adjust for population density or missingness of 
the uncertainty in data. Figure  4a shows the differences 
between the crude TPR to the modelled population-
weighted estimates while Fig.  4b shows the difference 
when compare to the unweighted mean. Population 

weighting adjusts the modelled TPR estimates within the 
sub-county based on population distribution. There were 
differences between crude and modelled estimates par-
ticularly in the sub-counties in the north of the Lake, e.g., 
Bungoma county. Higher modelled population-weighted 
TPR areas were also located in these northern sub-coun-
ties. At a county level, the highest mean predicted TPR 
was in Busia county, mean 70.6% (95% Bayesian credible 
interval 68.1–72.8%); 6 sub-counties in Busia (Bunyala, 
Butula, Samia, Matayos and Teso South) and Kakamega 
(Butere) had TRP greater than 70% (Additional file  3). 
Homa Bay county had the lowest population weighted 
TPR 33.2% (30.4–36.0%). Rachuonyo East sub-county in 
Homa Bay was the lowest 23.6% (22.1–25.1%).

Population at risk and micro‑stratification at sub‑county 
level
Of the 9.4 million residents of Western Kenya in 2019, 2.7 
million (28.5%) lived in 19 sub-counties where the prob-
ability of TPR exceeded 70% at 10% chance of a Type I 
error occurring (Fig.  5). These were predominantly in 
the north of Lake Victoria and for the two sub-counties 
in Migori. Some 3.1 million (32.6%) lived in areas where 
TPR was likely to be ≥ 40% and < 70% (19 sub-counties), 
and 1.5 million (15.8%) lived in 10 sub-counties where 
TPR was ≥ 30% but less than 40%. Finally, approximately 
2.2 million (23.1%) lived in 14 sub-counties where TPR 
was likely to be < 30% at 90% certainty (Additional file 3) 
corresponding to low-risk sub-counties where IRS was 
recently implemented.

Discussion
Routine data for micro-stratification in stable, malaria-
endemic settings should increasingly form the basis for 
tailoring malaria control and monitoring the impact of 
intervention(s) [6, 8]. Here, a geostatistical approach was 
applied to routine data from 8 counties of Western Kenya 
to explore heterogeneities in TPR to inform a micro-
stratification at the sub-county level (n = 62). These out-
puts have immediate potential to enhance the capacity of 
decision-makers for malaria control within the devolved 
national structure. The Western Kenya region has high 
coverage of health facilities congruent to population den-
sity and with good reporting rates (79%) of malaria out-
patient data to the national surveillance system (DHIS2). 
However, crude estimates of TPR data (Fig.  3a) do not 
account for the underlying spatio-temporal structure of 
the data, missingness and the underlying heterogene-
ous population distributions within each sub-county 
(Figs. 3b, 4).

There was marked heterogeneity in TPR with sub-
counties in the north of the Lake exhibiting the highest 
TPR (exceedance probability > 70% with 90% certainty) 



Page 6 of 9Alegana et al. Malar J           (2021) 20:22 

where approximately 2.7 million (28.5%) people reside. 
The regions with the highest malaria burden would 
require concerted effort to increase vector control and 

other interventions to reduce transmission and con-
sequent morbidity. Evaluating the probability of TPR 
exceeding a certain threshold promotes a policy-relevant 

Fig. 3 Maps of crude and population‑weighted modelled test positivity rate

Fig. 4 Comparison of crude TPR with modelled estimate
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dialogue on uncertainties related to estimates. For exam-
ple, if one was to include chemo-prophylactic initiatives 
[43] to accelerate a reduction in transmission, the tar-
geting of these interventions and the added costs would 
require some level of certainty. The Bayesian credible 
intervals presented for TPR account for the 21% missing 
data and account for the uncertainty introduced by the 
need to predict these missing data in time. Importantly, 
under-reporting at health facility level contributes to the 
underestimation of TPR when using crude estimates. 
Thus, modelling adjusts estimates of TPR to a likely aver-
age accounting for the underlying population heteroge-
neities. In Kenya, national stratification was based on a 
threshold of parasite prevalence without further consid-
eration of related uncertainty [23].

Carefully assembled TPR results also serve as a means 
to track the impact of malaria interventions. For exam-
ple, the effect of IRS in the two counties of Homa Bay 
and Migori where 3 rounds of IRS had been implemented 
since 2017 all showed considerably lower predicted TPR 
than neighbouring sub-counties. Importantly, the two 

sub-counties in Migori (Kuria West and Kuria East) 
where IRS was not implemented had much higher pop-
ulation-weighted, adjusted TPR values between 2018–19, 
60.8% (59.0–62.6%) and 54.5% (52.7–56.3%), respectively. 
Future applications of these routine data might include 
the possible impact of the pilot RTS,S vaccine pro-
gramme. However, it is notable that aggregated DHIS2 do 
not currently allow for finer age-structured data beyond 
under and above 5 years of age which would limit a closer 
understanding of vaccine effectiveness among children 
< 2 years.

Combining metrics from routine data (DHIS2) with 
community parasite prevalence could potentially improve 
estimates of disease burden at the population level [44–
46]. The underlying assumption is that the spatio-tempo-
ral correlation in TPR is usually driven by the underlying 
PR spatio-temporal structure. This requires further inves-
tigation over large regions and possible interaction with 
malaria co-infections. However, the immediate applica-
tion of such a hybrid approach is dependent upon a bet-
ter understanding of the relationship between TPR to PR 
at varying endemicity, which is not always linear [41, 42].

The estimation of TPR is dependent on reporting com-
pleteness, data quality (including diagnosis) and malaria 
treatment-seeking behaviour [1, 9]. Although prevalence 
of testing in the 8 counties was > 90%, the aggregated 
monthly data (denominator) did not distinguish between 
clinically diagnosed malaria and confirmed malaria. As 
previously observed these differences are not recorded 
consistently at the facility level or when submitted to 
the DHIS2 [47]. The 2015 Kenya Malaria Indicator Sur-
vey (KMIS) did not have adequate sampling at the sub-
county levels (or lower) and across all ages to adjust for 
malaria treatment-seeking behaviour in present study. 
Fever treatment is usually assessed for children under the 
age of 5 years only in survey data. Therefore, future stud-
ies could improve estimation of TPR at micro-scale using 
empirical data on treatment-seeking behaviour across all 
age groups.

The analysis presented here was limited to 2-year 
time-series data and could potentially be improved by 
the inclusion of longer space–time data sets to extract 
long-term trends [48, 49]. However, the data before 
2018 were influenced by nationwide medical staff 
strikes [50]. For the period considered (2018–2019), 
data from the lower-tier facilities were less likely to be 
complete compared to hospitals and suggests that the 
quality of data from these facilities remains inadequate 
[9], but can be improved by increased training of health 
workers and health records officers. There could be 
biases introduced due to the type of diagnosis at the 
facility level by using RDT or microscopy with vary-
ing sensitivities [51, 52]. RDTs are the most common 

Fig. 5 Map of exceedance probability
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diagnostic tools at the lower tier-facilities without a 
laboratory technician. However, no information was 
recorded on the type of RDT used. For microscopy, 
information on the quality of slide and reading was 
unavailable. The quality of diagnosis was not taken into 
account at the facility levels or the differences in fever 
testing rates, which is only possible through direct 
observational audits [12, 53, 54]. Finally, the quality of 
DHIS2 documentation is known to vary [47], and the 
reliability of individual records cannot be quantified 
without substantial health facility audits.

Conclusion
Adjusting for population distributions, data missing-
ness and building in statistical uncertainty can improve 
the value of routine data for malaria micro-stratifica-
tion. These approaches can identify impacts of local-
scale vector control and allow sub-national county 
Ministries of Health to tailor existing national recom-
mendations for control. Future research should aim at 
relating these heterogeneities in TPR with traditional 
community-level prevalence to improve micro-stratifi-
cation or and at granular and specific levels to improve 
our ability to track the impact of vaccination interven-
tions targeted for young children below 2 years.
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