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SUMMARY

CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir.
We measured CD32 expression in tissues from viremic and virally suppressed hu-
manized mice treated relatively early or late after HIV-1 infection with combined
antiretroviral therapy. CD32 was expressed in a small fraction of the memory
CD4+ T-cell subsets from different tissues in viremic and aviremicmice, regardless
of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-
associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the
CD32�CD4+ fraction. Using multidimensional reduction analysis, several memory
CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1.
Importantly, although tissue-resident CD32+CD4+ memory cells were enriched
with translation-competent reservoirs, most of it was detected in memory
CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/ex-
hausted memory CD4+ T-cell subsets that contain only a small proportion of the
translation-competent reservoir.

INTRODUCTION

The advent of combined antiretroviral therapy (cART) has dramatically improved the clinical care of HIV-1

infection. Since the START trial demonstrated that immediate initiation of cART is superior in reducing

serious acquired immunodeficiency syndrome (AIDS)- and non-AIDS-related events (Lundgren et al.,

2015), treatment guidelines advise to start therapy as early as possible (Panel on Antiretroviral Guidelines

for Adults and Adolescents, 2017). Although beneficial in reduction of morbidities, early treatment started

even during acute infection is not curative due to the establishment of long-lived viral reservoirs (Chun

et al., 1998; Archin et al., 2012; Deng and Siliciano, 2014; Colby et al., 2018). Viral reservoirs, quantified

by total HIV-1 DNA, are generally described as all cells infected with HIV-1, irrespective of their replication

status or competence (Avettand-Fenoel et al., 2016). Viral persistence of replication-competent HIV-1 un-

der cART, on a timescale of years, is however attributed to the latent portion of viral reservoirs. Therefore,

using a practical definition (Eisele and Siliciano, 2012), latently infected cells that contain dormant but repli-

cation-competent provirus and are capable to resume viral production at a future time point represent the

HIV-1 reservoir.

Latently infected cells have a half-life of 43.9 months, whichmakes them extremely resistant to antiretroviral

therapy (ART). Therefore, discontinuation of treatment will, with great certainty, be followed by a viral

rebound. The establishment of HIV-1 reservoirs occurs very rapidly upon primary infection. In simian immu-

nodeficiency virus, reservoirs are found as early as three days post-infection in various tissues, even before

virus detectability in circulation (Whitney et al., 2014). Likewise, in humans, initiation of cART during the

acute phase of infection does not impede reservoir formation (Chun et al., 1998; Colby et al., 2018). Latent

reservoirs are extremely stable with an estimated half-life of 43.9 months. This significantly hinders cART

ability to eliminate HIV-1 within a patient’s lifetime, with viral rebound highly likely to happen after treat-

ment interruption (Siliciano et al., 2003b; Besson et al., 2014; Buzon et al., 2015; Crooks et al., 2015). The

frequency of latently infected cells is very low (approximately 1 in 105-108 of CD4+ T cells) (Finzi et al.,

1997; Siliciano et al., 2003a; Strain et al., 2005), resulting in enormous technical challenges to precisely

determine and study HIV-1 latency. Originally, the highest frequency of latently infected cells was thought

to be localized in resting central memory CD4+ T cells (Chomont et al., 2009; Descours et al., 2012; Sáez-
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Cirión et al., 2013), but its heterogeneous dissemination over various CD4+ T-cell memory subsets has been

now recognized (Buzon et al., 2014; Banga et al., 2016; Zerbato et al., 2019; Kwon et al., 2020). In addition,

the tissue distribution of reservoirs is diverse and poorly reflected by recirculating CD4+ T cells in peripheral

blood (Blum and Pabst, 2007; De Scheerder et al., 2019). Against this background, the characterization of

cellular biomarkers of latently infected cells would enormously facilitate the development of strategies for

their targeted depletion.

Various surface markers (CXCR3, CCR6, CD2, PD-1, LAG-3, TIGIT) were proposed to identify latently in-

fected CD4+ T cells but studies have not converged (Iglesias-Ussel et al., 2013; Anderson et al., 2014; Banga

et al., 2018; Fromentin et al., 2016; Gosselin et al., 2017). The Fc-g-RII receptor CD32 was recently proposed

as a putative marker of cells highly enriched for total HIV-1 DNA and for replication-competent provirus

(Descours et al., 2017). These findings have attracted a lot of attention but some recent works have relin-

quished inconclusive results (Abdel-Mohsen et al., 2018; Bertagnolli et al., 2018; Martin et al., 2018;

Noto et al., 2018). CD32+ CD4+ T cells were shown to harbor a higher activation profile and to correlate

with general immune activation. Overall, data from several patient cohorts did not substantiate the rele-

vance of CD32 expression in latent HIV-1 reservoir probably due to the heterogeneity of cART initiation’s

timing, cART duration, and levels of immune activation. Recently, the different purity of CD32+CD4+ T cells

across various studies was proposed as a possible explanation for these divergent findings (Abdel-Mohsen

et al., 2018; Darcis et al., 2019). Furthermore, only few studies have scrutinized the role of CD32 in tissues

(Noto et al., 2018; Cantero-Pérez et al., 2019; Thornhill et al., 2019).

Molecular mechanisms of HIV-1 latency have been mainly studied in cell lines, but these data have very

limited relevance within clinical settings (Han et al., 2007; Van Lint, Bouchat and Marcello, 2013; Whitney

and Brad Jones, 2018). Instead, humanized mice models have earned their place in HIV-1 research as ver-

satile tools to study HIV-1 pathogenesis in vivo (Marsden and Zack, 2017). To date, cART treatment has re-

produced the features of HIV-1 latency in these small animals (Marsden et al., 2017; Satheesan et al., 2018).

The advantages of such models are the easy access to all anatomical sites and the precise control over

timing and duration of treatment allowing a detailed understanding of HIV-1 latency under various

conditions.

We have developed an HIV-1 latency model in humanized Nonobese diabetic/Severe Combined Immuno-

Deficient gamma (NSG) mice to investigate the early establishment of the viral reservoir in untreated, early

(one week after HIV-1 infection), and late treated mice (seven weeks after HIV-1 infection) with cART. Our

study examined the expression of CD32 as a marker of viral reservoirs in memory CD4+T cells with capa-

bilities of long-term persistence and its relationship to immune activation. Using a strict flow cytometry

gating strategy, we show here that CD32 expression was low in CD4+ T cells from different tissues in hu-

manized mice treated early or late and was mostly due to the expression of the CD32a isoform.

CD32+CD4+ memory T cells were enriched in cell-associated HIV-1 DNA (CA HIV-1 DNA) but not in cell-

associated HIV-1 RNA (CA HIV-1 RNA), indicating HIV latency in these cells. CD32+CD4+ memory subsets

were associated with their activation/exhaustion status under cART, and cluster analysis revealed that

CD32+CD4+ memory cells are phenotypically related to cells expressing HLA-DR, PD-1, or TIGIT. Impor-

tantly, most of the p24 productive reservoir upon latency reversal was situated in the CD32- memory

CD4+ T cell fraction. Taken together, our data indicate that CD32 expression describes activated CD4+

T-cell memory subsets enriched for proviral DNA independently of treatment initiation. Ultimately, we

showed here that CD32 does not clearly label the translation-competent HIV-1 reservoir that needs to

be eliminated in the perspective of HIV-1 cure.
RESULTS

Early cART treatment leads to faster viral suppression than late treatment in humanized mice

In this study, NSG mice were ‘‘humanized’’ with CD34+ hematopoietic stem cells over 24 weeks and then

infected with HIV-1 JR-CSF Infectious Molecular Clone (pYK-JRCSF). One group was left untreated, a sec-

ond group was treated early (one week after HIV-1 infection), and a third group was treated late (seven

weeks after HIV-1 infection) (Figure 1).

In each group, oral treatment was maintained for eight weeks. As expected, in all conditions, a sharp in-

crease of plasma HIV-1 RNA in the range of 104-105 copies per ml was detected during the first week after

infection (Figure 2A). Subsequently, plasma viremia was strongly reduced within two weeks of either early
2 iScience 24, 101881, January 22, 2021



Figure 1. Design of the Study

One hundred twenty humanized NSG mice were infected with HIV-1 JRCSF. At week one post-infection, the cART regimen was initiated (n = 58) in the early

treated group and sustained for twomonths. Late treatment was started at seven weeks post-infection (n = 42) and continued for twomonths. In each group,

a number of animals were sacrificed at the end of treatment, corresponding to week nine for early treated (n = 43) and to week fifteen for late treated (n = 34)

animals. The untreated group (n = 20) never received cART and was euthanized correspondingly to the sacrifices of both treatment groups (week nine for

early treated andweek fifteen for late treatedmice). Viral rebound after treatment interruption wasmonitored for the remaining early (n = 15) and late treated

(n = 8) animals for a duration of six weeks or longer if animals were not detectable for HIV-1 viral load.
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or late treatment. Interestingly, early treatment led to a significantly quicker viral suppression (i.e. undetect-

ability of the viral load) (p < 0.0001, Figure 2C). Conversely, the kinetics of viral rebound after treatment

interruption were similar for both treatment groups (Figure 2D). Importantly, we observed that a portion

of early treated mice rebounded only transiently (four out of fifteen or 26.7%) with ‘‘spontaneous’’ viral sup-

pression up to six weeks after treatment cessation, whereas this ‘‘secondary control’’ phenomenon was not

observed in the late treated group (Figures S1A and S1B). We measured HIV-1 RNA in the bone marrow,

spleen, and lymph nodes of early treated mice as compared to untreated viremic mice after one week of

HIV-1 infection. Viral loads were almost undetectable in the bone marrow of the treated mice, whereas

some ongoing HIV-1 replication still occurs in the spleen and in the lymph nodes as shown by a detectable

viral load in these two tissues (Figures S1C and S1D). Taken together, these observations indicate the

establishment of replication-competent viral reservoirs within one week of infection in this model.

The immunological hallmark of HIV-1 infection is the depletion of CD4+ T cells. As expected, we observed a

rapid decline in circulating CD4+ T cells upon infection. At week three post-infection, untreated mice lost

around one third of their human CD4+ T cells, whereas early treatment prevented CD4+ T-cell loss (Fig-

ure 2B). Late treatment onset allowed a gradual recovery of CD4+ T cells. At the endpoint (week sixteen),

the late treated mice showed peripheral blood CD4+ T-cell counts restored to similar levels when

compared to the early treated mice (Figure 1). In agreement with our findings from peripheral blood (Fig-

ure 2B), the relative number of human CD4+ T cells was also significantly increased by cART in the spleen for

both treatment groups (Figures S2 and 2A). These data suggest recovery of the human CD4+ T-cell

compartment even after late cART onset in our model.
Total HIV-1 DNA and T-cell exhaustion are significantly reduced by early cART treatment

The stable persistence of provirus during therapy is a defining factor of HIV-1 latency. Therefore, we

analyzed three different organ sites (bone marrow, lymph nodes, and spleen) for the presence of CA

HIV-1 DNA by droplet digital Polymerase Chain Reaction (ddPCR), either at the end of cART treatment

or corresponding time points for the non-treated animals (see experimental design in Figure 1). cART

led to a significant reduction of CA HIV-1 DNA compared to the untreated control group (Figure 3A).

Furthermore, early initiation of cART significantly reduced CA HIV-1 DNA as compared to late initiation

in bone marrow (1.82 and 3.85 median log10 copies/million cells, respectively) and lymph nodes (2.45

and 3.7 median log10 copies/million cells, respectively), with a similar but non-significant trend observed

in the spleen. These data underline that humanized mice mimic reservoir establishment and persistence

during cART treatment similar to humans.
iScience 24, 101881, January 22, 2021 3



Figure 2. Early Treatment Significantly Decreased Time to Viral Suppression

(A and B) (A) Plasma viral load of early treated (n = 43), late treated (n = 34), and untreated (n = 20) mice and (B) percentage

of CD4+ T cells were determined every two weeks in peripheral blood. Background coloring of graphs highlights

treatment periods: light green for early treatment, violet for late treatment, dark green is obtained by a two-week overlap

(week seven to week nine) of early and late treatment periods (figure A and B).

(C and D) (C) Time to viral suppression (median two and four weeks, respectively) (p < 0.0001) and (D) viral rebound (p =

0.107) for the early and late group. Statistical analysis was executed using Mantel COX rank test. (***p < 0.005; ns,

nonsignificant test p > 0.05).
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Infection with HIV-1 induces not only loss of CD4+ T cells in humans but also long-term alterations of the

activation status in CD4+ and CD8+ T cells which persist during cART (Hazenberg et al., 2000; Hunt

et al., 2003). In our humanized mice model, we assessed T-cell phenotypes in the tissues at the end of treat-

ment and corresponding time points for untreated animals by flow cytometry. The expression of the

exhaustion markers PD-1 and TIGIT was decreased by cART treatment on both CD4+ and CD8+ T cells,

but the decrease was only significant between untreated and early treated groups (Figures 3B and 3C).

Interestingly, the activation marker HLA-DR showed no difference among groups (Figures 3B and 3C). In

addition, we observed a normalization of CD27 expression on CD4+ T cells by both treatment regimens

(Figures S2B), suggesting a recovery in T-cell differentiation in our humanized mice model.
CD32+CD4+ memory T-cells do not contain T-B cell conjugates and harbor higher amounts of

CA HIV-1 DNA but not of HIV-1 CA RNA

Next, we investigated the expression of CD32, a proposed marker of the HIV-1 reservoir. Given the previ-

ously reported technical difficulties to obtain pure CD32+CD4+ T cells (Martin et al., 2018; Osuna et al.,

2018; Pérez et al., 2018), we applied an elaborated flow cytometry gating strategy to isolate CD4+ memory

T cells (defined as CD45RA�) excluding doublets. To preclude contaminations by doublets, B cells or

monocytes, strict singlet gating (on area versus width for forward and side scatter), as well as exclusion

of CD19 and CD14 signals, were performed to analyze and sort CD32+CD4+ T cells by flow cytometry (Fig-

ure S3). The mean post-sorting purity of the CD32+CD4+ T cells was 98.8% of CD4+ T-cell singlets (Fig-

ure S4). We observed also that human CD4+ T cells contained a CD32 dim population with low expression

of CD32 in contrast to a CD32 bright population expressed in CD19+ B cells and T-B cell doublets or conju-

gates (Figure S5A). We next investigated whether T-B cell trogocytosis was involved as previously reported

(Martin et al., 2018; Osuna et al., 2018; Thornhill et al., 2019) by using image cytometry on CD32+ CD4+

CD45RA� memory sorted T cells of humanized mice and of HIV-1-infected patients. CD32+CD4+ memory

T cells contained no doublets, T-B cell conjugates, or B cell/monocyte contaminations (manual viewing of

sorted cell images, data not shown). CD32 expression was localized in small, concentrated areas of CD4+

T cells (Figures 4A and 4C) in contrast to sorted B cells on which CD32 was distributed homogeneously over

the cell membrane (Figures 4B and 4D). Of note, no signal of CD19 or CD20 expression was detected on
4 iScience 24, 101881, January 22, 2021



Figure 3. cART Significantly Decreased Total HIV-1 DNA in Peripheral Organs and HIV-1-Related Immune

Exhaustion and Activation on Human T Cells

(A) Total HIV-1 DNA quantified from the bone marrow, lymph nodes, and spleen is represented for early treated (n = 9),

late treated (n = 11), and untreated mice (n = 6). Percentages of cells expressing the respective markers PD-1, TIGIT, and

HLA-DR on CD4+ T cells (B) and CD8+ T cells (C) extracted from the spleen at experimental endpoint (median age of nine

months, eight weeks total cART duration for both treatment groups) are depicted for early treated mice (n = 17), late

treated mice (n = 23), and untreated mice (n = 16). Statistical testing was performed using non-parametric Kruskal-Wallis

tests with multiple comparison Dunn’s correction. (*p < 0.05, **p < 0.01, ***p < 0.005, ***p < 0.001, ns, nonsignificant test,

p > 0.05).
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CD32+CD4+ T cells (Figures 4A and 4C). Importantly, overlay images emphasize that CD32 expression is

rooted in small, non-CD4+ T-cell compartments attached to CD4+ T cells (Figures 4E and 4F). To explore

if other cell types known to closely interact with CD4+ T cells might be the source of these CD32 expressing

fragments attached to the CD4+ T cells, we used flow cytometry in peripheral blood mononuclear cells

(PBMCs) of two HIV-1-infected patients treated with cART for at least two years and we did not exclude

B or CD14+ cells as previously done. We detected different lineage markers coexpressed on CD32+

CD4+ T cells that could explain the origin of the attached fragments (potential trogocytosis): between

30 and 39% of HLADR (Human Leukocyte Antigen – DR isotype) + CD19+ B cells, around 1% of NK cells

(CD4+CD16 + HLADR+), 4% of monocytes (all CD14+ cells), and up to 1% of dendritic cells (CD11c+).

Around 7% of CD32+ CD4+ T cells were expressing HLA-DR, and this expression was not provided by

CD19+ B cells, CD11c+, or CD16+ cells. Therefore, as we excluded B cells and monocytes in our strict

flow cytometry strategy in this study, the fragments attached to the CD4+ T cells might come from other

antigen-presenting cells (APCs) or NK cells. Furthermore, we measured the mRNA expression of CD32a

and CD32b by real-time PCR in sorted CD32+CD4+CD45RA�T cells and in a pool of CD14+ and CD19+ cells

that were excluded by our flow cytometry gating strategy. CD32+ CD4+ CD45RA� memory T cells ex-

pressed mainly CD32a and low levels of CD32b mRNA, whereas both CD32a and CD32b mRNA were ex-

pressed in the pool of CD14+ and CD19+ cells (Table 1), confirming the exclusion of B cells in our purified

CD32+CD4+ memory T cells.
iScience 24, 101881, January 22, 2021 5



Figure 4. CD32 Is Expressed on Cell Fragments Attached to CD4+ T Cells with No Signs of T-B Cell Trogocytosis

To assess whether the expression of CD32 on CD4+ T cell comes from T cells or T-B cell conjugates, imaging flow cytometry was performed on sorted

CD32+CD4+ T cells (A, C, E, and F) or sorted CD19+ B cells (B and D) isolated from the spleen of cART suppressed HIV-1-infected humanized mice (A, B, E) or

peripheral blood mononuclear cells (PBMCs) from cART suppressed HIV-1-infected patients (C, D, and F). Flow sorted B cells from humanized mice or

patients were stained, acquired, and represented with the same settings and experimental procedures and,hence, serve as reference population with regard

to CD32, CD19 ,and CD20 signal on images (B, D). Overlay shots of CD4 and CD32 signals of splenocytes from a humanized mouse (E) and of PBMCs from

one HIV-1-infected patient (F).
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When assessing the expression pattern of the memory CD32+CD4+ T cells in the different groups of mice,

we found that overall CD32 cell surface expression did not differ substantially across various tissues nor be-

tween treatment groups (Figures S6A–S6D). Only lymph node T cells from healthy mice had significantly

lower CD32 expression when compared to the untreated group (Figures S6 and 6D). Importantly, we did

not find any difference during longitudinal sampling in the spleen (Figure S5B). To determine whether

CD32 expressing cells were enriched for total CA HIV-1 DNA or RNA in cART-suppressed mice, CD32-

and CD32+ were flow sorted from the CD4+ memory (i.e. CD45-) T cells. A sufficient quantity of

CD32+CD4+ memory T cells were only obtained from the bone marrow and spleen. Memory
6 iScience 24, 101881, January 22, 2021



Mouse ID BM Spleen Sorted cell fraction Ct values DCT value against

GAPDH

CD32a CD32b GAPDH CD32a CD32b

S789 X Pool of CD19+ and CD14+ cells 32,36 31,92 24,65 7,71 7,28

S803 X Pool of CD19+ and CD14+ cells 28,86 30,4 21,76 7,1 8,63

S804 X Pool of CD19+ and CD14+ cells 34,45 33,7 25,18 9,27 8,51

S789 x Pool of CD19+ and CD14+ cells 34,51 32,91 27,92 9,59 4,98

S803 x Pool of CD19+ and CD14+ cells 28,99 30,04 25,25 3,73 4,79

S804 x Pool of CD19+ and CD14+ cells 32,35 30,9 26 6,35 4,9

S789 x CD32-CD4+ memory T cells 36,58 37,14 25,07 11,51 12,7

S803 x CD32-CD4+ memory T cells 36,67 36,09 25,36 11,3 10,73

S804 x CD32-CD4+ memory T cells 36,23 37,61 25,97 10,26 11,64

S789 x CD32-CD4+ memory T cells 39,48 38,31 27,73 11,75 10,58

S803 x CD32-CD4+ memory T cells 36,75 36,79 25,37 11,38 11,41

S804 x CD32-CD4+ memory T cells 36,67 36,69 24,81 11,86 11,88

S789, S803, and S804 pooled x CD32 + CD4+ memory T cells 32,14 36,72 26,69 5,45 10,02

S789, S803, and S804 pooled x CD32 + CD4+ memory T cells 34,21 38,82 28,74 5,47 10,08

PCR-negative controls UND UND UND NA NA

Table 1. Gene expression of CD32a and CD32bmRNA isoforms of sorted CD45RA�CD32�CD4+ T cells and a pool of CD19+ and CD14+ cells isolated

from 3 single virally suppressed humanized mice (S789, S803, S804) and sorted CD45RA+CD32+CD4+ T cells pooled from the 3 virally suppressed

humanized mice

Results were analyzed against the GADPH Ct value. UND, undetectable; N/A, not available.
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CD32+CD4+ T cells harbored significantly higher levels of HIV-1 DNA as compared to their CD32 negative

counterparts (Figures 5A and 5B) in the spleen (4.35 vs 3.51 median log10 copies of HIV-1 DNA per million

cells, respectively, p < 0.01) and in the bone marrow (4.42 vs 3.55 median log10 HIV-1 DNA copies per

million cells, respectively, p < 0.05). Next, we quantified CA HIV-1 RNA but only 14 spleen-derived samples

could be included due to low total RNA yield from CD32+CD4+ T cells. Although we used a limited set of

sampling, we observed no difference for CA HIV-1 RNA between the CD32+CD4+ and the CD32�CD4+

memory subsets of the spleen (Figure 5C) (11.52 versus 45.16 median copies of CA RNA per million cells)

for all mice with a detectable viral load.
CD32 is expressed on highly activated memory CD4+ T cells and its level of expression does

not correlate with the HIV-1 total DNA

Next, we assessed whether CD32+CD4+ T cells from tissue lymphocytes showed a particular activation/

exhaustion profile as recently suggested (Badia et al., 2018). We found a significant upregulation of

HLA-DR and PD-1 expression but not of the immune checkpoint marker TIGIT in CD32+CD4+ memory

T cells (Figures 6A–6C), as compared to their CD32- counterparts. This trend was observed in both early

(p < 0.05) and late treatedmice (p < 0.001). We also measured the expression of the early and late activation

markers CD69, HLA-DR, and CD38 (all combined in one channel) of the flow sorted CD32+ and CD32-CD4+

memory T cells. A median of 80% CD32+CD4+ memory T cells expressed at least one of these activation

markers as compared to a median of only 7% CD32�CD4+ memory T cells (Figure 6D). Moreover, the geo-

metric mean fluorescence intensity (GMFI) of CD32 correlated moderately with the cumulated GMFI of the

three activation markers (Spearman correlation, p value = 0.0004, r = 0.6872) (Figure 6E). In contrast, there

was no correlation between CD32 expression and the total HIV-1 DNA content in CD4+ T cells (data not

shown, p value = 0.5809, r = �0.2167).
iScience 24, 101881, January 22, 2021 7



Figure 5. Total HIV-1 DNA Is Higher in CD32+CD4+ Memory T Cells in the Spleen and the Bone Marrow

Total HIV-1 DNA from flow sorted CD3+CD4+CD45RA� T cells according to CD32 expression in bone marrow (A) and

spleen (B) in virally suppressed mice (mixed from early and late treatment conditions) (bone marrow n = 11, spleen n = 10)

depicted as aligned dot plots of individual measurements (CD32- in black circles and CD32 + in red squares). The flow

gating strategy is depicted in Figure S3. (C) HIV-1 CA RNA in flow sorted CD4+memory T cells (CD32- (n = 9) CD32+ (n = 5))

from virally suppressed mice (mixed from early and late treatment conditions). Statistical testing was done using non-

parametric paired Wilcoxon rank tests (A and B) or non-paired tests (C). Exact p values for HIV-1 DNA: bone marrow,

0.0278; spleen, 0.0039, (*p < 0.05. **p < 0.01).
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We next performedmultidimensional single-cell analysis using flow cytometry to investigate the activation/

exhaustion co-expression patterns of the CD32+CD4+ memory T cells. CD32+CD4+ memory T cells were

analyzed in untreated viremic mice (untreated [UT] mice, after four and eight weeks of HIV-1 infection)

and in virally suppressed treated mice after four and eight weeks of cART treatment for both early (early

treated [ET] mice) and late treated (late treated [LT] mice) groups. Co-expression of the markers was

analyzed using the unsupervised algorithmic technique Flow Self-OrganizingMap (FlowSOM). The clusters

defined by FlowSOM (Figure 7A) were organized in a two-way hierarchical heatmap to determine their rela-

tionship (Figure 7B). Statistical analysis of the differential enrichment of clusters at week 4 and 8 revealed

major changes in mice undergoing late treatment. Six clusters belonging to the central effector memory

CD4 metacluster (metacluster number 8) showed an increase at week 8. The majority of these clusters ex-

pressed HLA-DR and in one we observed the expression of CD32 (cluster 6). Overall, clustering identified

three CD4+ T-cell populations harboring CD32 expression that showed a significant increase at week 8 in

early treated mice (ET clusters 3, 11, 21) and one CD4+CD32+ cluster demonstrating a similar increase in

late treated mice (LT clusters 6). Cluster 9 and 47 in LT mice were the unique CD4+CD32+ clusters showing

a decrease at week 9. No significant changes were observed in UT mice. These memory CD4+ clusters ex-

pressed either CD32dim alone (ET cluster 21) or CD32dim HLA-DRhigh expression (ET cluster 3) or CD32dim

HLA-DRhigh and PD-1low expression (LT cluster 6) or CD32dim HLA-DRdim TIGIThigh PD-1dim expression (ET

cluster 11) or CD32high HLA-DRdim TIGITdim PD-1high expression (LT cluster 9) (Figure 7B). Only one naive

CD8+CD32+ cluster harboring HLA-DRhigh expression was detected in CD8+ T cells in late treated mice

(LT cluster 47). These data showed the presence of phenotypically related activated or exhausted subsets

in the memory CD4+ CD32+ T cells in the cART-treated mice when compared to their untreated counter-

part. Overall, the expression of CD32 in these clusters was always associated with another activation (HLA-

DR) or exhaustion marker (PD1, TIGIT), demonstrating that CD32 labeled a highly activated part of the

memory CD4+ T cells.
Tissue-resident memory CD32�CD4+ T cells contain most of the translation-competent virus

producing p24

Finally, we sought to answer whether CD32+CD4+memory T cells contained the inducible translation-

competent HIV-1 by assessing p24 production after phorbol myristate acetate (PMA)/ionomycin activation

in the presence of raltegravir and lamivudine to prevent viral spread. Interestingly, more than 95% of p24

producing cells were detected in the CD32-negative fraction from the spleen in both viremic and virally

suppressed mice (Figure 8B). Nevertheless, CD32+CD4+ memory T cells harbored a higher frequency of

p24-positive cells when compared to CD32�CD4+ memory T cells suggesting a relative enrichment, as re-

ported for total HIV-1 DNA (Figure 8C). Furthermore, we found higher levels of activation/exhaustion
8 iScience 24, 101881, January 22, 2021



Figure 6. CD32 ExpressionWas Associated with High Expression Levels of Activation/Exhaustion Markers and Did Not Correlate with HIV-1 DNA

(A–C) Expression of HLA-DR (A), PD-1 (B), and TIGIT (C) in CD32-positive and negative CD4+ memory T cells from the spleen.

(D) Expression level of three combined activation markers (HLA-DR, CD38, and CD69) in flow sorted CD4+ memory T cells according to their CD32

expression. Geometric mean fluorescence intensity (GMFI) of activation markers plotted against the GMFI of CD32 from virally suppressed mice (mixed early

and late treatment conditions).

(E) Spearman correlation with fitted linear regression line (p value: 0.0004, R value: 0.6872). Statistical testing by non-parametric Mann-Whitney or Kruskal-

Wallis tests with multiple comparison Dunn’s correction. Two-tailed spearman correlation (*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, ns,

nonsignificant test, p > 0.05).
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markers on CD32+CD4+ memory T cells producing p24 than their CD32- counterpart, but this was signifi-

cant only for PD1 (Figure 8D).
DISCUSSION

HIV-1 persists in a pool of latently infected CD4+ T cells, which constitutes a major barrier to curing HIV-1

(Katlama et al., 2013). Early studies found that this reservoir is mainly localized in CD4+ resting T-cell mem-

ory subsets (Chomont et al., 2009) but recent evidence has substantiated on its wide spread distribution

over various compartments of CD4+ T cells (Buzon et al., 2014; Khoury et al., 2016; Hiener et al., 2017; Zer-

bato et al., 2019; Kwon et al., 2020). A number of strategies aiming at reducing the size of the HIV-1 reservoir

are currently under investigation. Therefore, the discovery of a specific latently infected cell’s marker could

facilitate tailored interventions. CD32 was proposed as such by Descours et al. (Descours et al., 2017) but

has been heavily debated ever since (Bruel and Schwartz, 2018; Darcis et al., 2019). Here, we scrutinized the

relationship between the timing of ART initiation, T-cell immune activation/exhaustion, and reservoir char-

acteristics with regard to CD32 expression in tissues from humanized mice in order to delineate its use as a

surrogate marker of the viral reservoir.

Several groups have reported on humanized mice models of HIV-1 latency and their utility (Nischang et al.,

2012; Halper-Stromberg et al., 2014; Iordanskiy et al., 2015; Satheesan et al., 2018; Llewellyn et al., 2019).

We validated our humanized mice model of HIV-1 latency by first showing that the time to viral suppression

was shortened by early cART treatment as compared to late therapy which is similar to clinical observation

in humans (Ssebunya et al., 2017). Multiple studies have reported the benefits of early cART on immune

activation. Persistent chronic infections trigger increased expression of immune checkpoints such as

PD-1 and TIGIT on CD4+ and CD8+ T cells (Day et al., 2006; Trautmann et al., 2006), whereas cART
iScience 24, 101881, January 22, 2021 9



Figure 7. High-Dimensional Analyses Highlighted Different Activated/Exhausted Clusters Expressing CD32 in

Memory CD4 T Cells from the Spleen of Early and Late Treated Mice with cART

(A) FlowSOM hierarchical tree colored according to metaclusters.

(B) Metaclusters were annotated according to the heatmap shown in. Two-way hierarchical clustering of the 49 clusters

defined by FlowSOM and the median expression of the 9 markers indicated on the right of the heatmap. Median

expression across the three groups of mice is shown. Three viremic untreated mice (untreated mice, UT)) were kept four

weeks without treatment and four viremic mice were kept eight weeks; twenty-two mice were virally suppressed by

receiving early cART treatment (n = 12, ET mice) or receiving late cART treatment (n = 10, LT). The clusters significantly

different (p < 0.05) between four weeks and eight weeks of treatment are depicted on the bottom of the heatmap. A

significant increase or decrease is indicated in red or cyan, respectively.
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decreases PD-1 expression in parallel with reducing plasma VL after treatment onset (Cockerham et al.,

2014b). In our study, we observed a consistent decline of PD-1 and TIGIT expression that was only signif-

icant by early cART initiation when compared to untreated mice. The T-cell activation marker HLA-DR was

not significantly decreased by early or late cART regimen. Nevertheless, the recovery of total CD4+ T-cell

counts was rapid and successful in both treatment groups. These findings highlight that key aspects of HIV-

1 pathogenesis and cART treatment are recapitulated in the presented model.

It is accepted that early cART effectively reduces the size of viral reservoirs and preserves the functionality of

CD8 T cells, two conditions that might allow some individuals to achieve functional HIV-1 cure (Conway and

Perelson, 2015). Our findings underline the impact of treatment initiation’s timing on the level of total HIV-1

DNA spread in tissues as described in humans (Ananworanich et al., 2012; Laanani et al., 2015). Conversely,

time to viral rebound did not differ between early and late treated conditions, similarly reported by two

clinical studies that found also no prolonged control upon treatment cessation despite early ART initiation

(Gianella et al., 2015; Colby et al., 2018). Consequently, it could be argued that total HIV-1 DNA, when

sampled in tissues, is not a surrogate marker for time to viral rebound in contrast to human studies from

peripheral blood (Azzoni et al., 2013; Williams et al., 2014). Importantly, we observed that a portion of early
10 iScience 24, 101881, January 22, 2021



Figure 8. P24 Production after Latency Reversal Is Predominantly Found in CD32�CD4+ Memory T Cells and Not

in the CD32+ Fraction

(A) Representative fluorescence activated cell sorting (FACS) plots of p24 staining in an untreated viremic mouse after five

weeks of HIV-1 infection and one ART-treated mouse, as well as a non-infected control mouse after PMA/ionomycin

reactivation. The strict gating assured no false positive signal.

(B) Intracellular p24 staining after PMA/ionomycin activation in ART-treated animals (n = 4) revealed that the highest

proportion of productive cells is CD32- and not CD32 +.

(C) The frequency of p24 producing cells is higher within CD32+CD4+ memory T cells than in CD32- cells.

(D) Expression of HLA-DR, CD38, and PD-1 at the surface of the reactivated cells producing p24 from graph B. Statistics

were performed using non-parametric testing. (*p < 0.05, ns, nonsignificant test, p > 0.05).
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treated mice rebounded only transiently (26,67%) with subsequent ‘‘spontaneous’’ viral suppression,

whereas this ‘‘secondary control’’ phenomenon was not observed in the late treated group. This suggests

that early treatment increases the odds for delayed rebound, similar to a conclusion reached by the

CHAMP cohort (Namazi et al., 2018) that found higher percentage of post-treatment control (PTC) in early

treated individuals. The antiviral CD8+ T-cell response could play a role during PTC, but this was not

explored in greater detail because NSGmice lack antigen-specific T cells due to the absence of HLA-I pre-

sentation (Policicchio et al., 2016). Clearly, future studies should investigate the mechanisms of delayed

rebound in this model. Taken together, our data showed however that the viral reservoir is already estab-

lished and functional within one week after infection in most of the mice.
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A number of cellular HIV-1 reservoir markers have been proposed over the last years. Among those markers

the activation and immune checkpoint molecules HLA-DR, PD-1, TIGIT, but also CD32a (Cockerham et al.,

2014a; Fromentin et al., 2016; Descours et al., 2017; Gosselin et al., 2017; Hogan et al., 2018). According to

Descours et al., CD32a exhibited the promising trait to contain the replication-competent reservoir and to

enrich for about 103 fold enrichment for total HIV-1 DNA (Descours et al., 2017). These results have been

challenged by others, reporting either no (Abdel-Mohsen et al., 2018; Martin et al., 2018) or only marginal

enrichment (Bertagnolli et al., 2018; Pérez et al., 2018), for both HIV-1 DNA and replication-competent

proviruses. Such divergent findings were proposed to be due to technical tribulations during purification

of CD32+CD4+ T cells (Darcis et al., 2019), as several studies showed that CD32+CD4+ T cells contained

residual contamination by APCs which express high levels of CD32 (Martin et al., 2018; Osuna et al., 2018;

Pérez et al., 2018; Thornhill et al., 2019). Therefore, we established a flow cytometry strategy with strict

exclusion of B cells and monocytes (CD19 and CD14, respectively) as both cell types had been identified

as sources for non-T-cell contamination before (Martin et al., 2018; Osuna et al., 2018). This approach

enabled the identification of a CD32dim and not the CD32high population in a small fraction of CD4+

T cells. Using imaging cytometry, in both humanized mice and in HIV-1-infected patients, we found

that purified CD32+CD4+ T cells expressed CD32 on small, concentrated areas as previously reported

by Osuna et al. (Osuna et al., 2018) but without co-localization of monocytes or B cell markers (CD19

or CD20), thus excluding B-cell trogocytosis. Still, we detected a polarized and concentrated localization

of the CD32 protein on the membrane of CD4+ T cells that could come from other APCs or NK cells. We

detected CD32a mRNA expression on CD4+ memory T cells and a weak expression of CD32b mRNA as

well, whereas a pool of CD19+ and CD14+ population of B cells and monocytes expressed both CD32a

and CD32b mRNA. This suggests endogeneous expression of CD32a by CD4+ T cells similar to previous

findings (Holgado et al., 2018; Darcis et al., 2020). However, the latter results have to be interpreted with

caution as imaging cytometry data of ours and others (Osuna et al., 2018; Thornhill et al., 2019) unani-

mously challenge the origin of CD32 protein on CD4+ T cells. We assume that CD32b mRNA might orig-

inate from the attached CD32+ non-CD4+ T-cell entities or from trogocytosis-positive T cells expressing

higher level of activation markers, such as CD32a, due to more intensive T-cell/APC interaction. Taken

together, we clearly identified a non-monocyte or non-B-cell-induced portion, potentially due to trogo-

cytosis from other APC types or NK cells of CD32+CD4+ T cells or even from residual binding with plate-

lets known to express CD32a. These findings are in line with a recent study working on highly pure

CD32+CD4+ T cells (Darcis et al., 2020) and might advance the debate opened by many reports on

the source for the CD32 signal on CD4+ T cells (Martin et al., 2018; Osuna et al., 2018; Pérez et al.,

2018; Thornhill et al., 2019). Ultimately, our results open new questions about the exact origin of the

CD32 protein on CD4+ T cells.

In our study, we further focused on CD32 expression in memory CD4+ T cells (CD45RA�) as this subset is
comprises central and effector memory T cells which are well known to contain the highest frequencies of

latently infected cells (Chomont et al., 2009; Bosque et al., 2011; Imamichi et al., 2014; Soriano-Sarabia

et al., 2014; Murray et al., 2016). As compared to other studies, we included both resting (HLA-DR- or

CD38- or CD69-) and non-resting (HLA-DR+ or CD38+ or CD69+) memory T cells. We found a significant

increase of CD32 expression between HIV-1-infected and uninfected mice in human lymph nodes only as

previously described (Bertagnolli et al., 2018). Importantly, a significant increase of about 0.85 log10

copies of CA HIV-1 DNA per millions cells in CD32+ when compared to CD32- memory T cells was

observed in virally suppressed mice. These findings are in agreement with results obtained from human

lymph nodes (Noto et al., 2018) but not with data derived from peripheral blood of HIV-1-infected pa-

tients (Abdel-Mohsen et al., 2018; Badia et al., 2018; Osuna et al., 2018; Pérez et al., 2018) unless the

CD32+ cells underwent multiple, consecutive rounds of purification to exclude B cells, monocytes, and

T-B cell doublets (Darcis et al., 2020). Despite CA HIV-1 DNA enrichment, there was no difference in

CA HIV-1 RNA between CD32+ and CD32�CD4+ memory T cells from the spleen, suggesting that

CD32 labels cells with proviruses that are transcriptionally silent in tissues. However, the sample size

of our data is limited because the total RNA yield from sorted subsets was low, and this represents a

limitation of our study. Several studies from the lymph node and gut tissue reported the contrary (Ab-

del-Mohsen et al., 2018; Badia et al., 2018; Noto et al., 2018; Vasquez et al., 2019), but these findings

are in accordance with a recent study from highly purified blood-derived lymphocytes (Darcis et al.,

2020). Low transcription levels could be counterintuitive because we confirmed here, as others, that

CD32+CD4+ T cells express HLA-DR activation marker. Nevertheless, activated subsets can indeed

establish latent HIV-1 infection (Chavez, 2015; Lee et al., 2019).
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CD32 is a low affinity receptor for the Fc portion of IgG (FcgR) which represents a link between humoral and

cellular immunity and is highly expressed on myeloid cells and B cells. The functional role of CD32 on CD4+

T cells is not well understood yet. However, it has been suggested that immune complexes might

contribute to the continuation of chronic inflammatory responses by enhancing the activation of T cells

through CD32 (Holgado et al., 2018) that might maintain persistence of the latent HIV-1 reservoir. Impor-

tantly, the expression of HLA-DR, CD38, and CD69 was strongly increased in CD4+CD32+ memory T cells

from the tissues of cART-treated mice similar to recent studies from peripheral blood lymphocytes in hu-

mans (Badia et al., 2018; Wittner et al., 2018). Therefore, CD32+ CD4+ T cells might be more susceptible to

HIV-1 infection because they are activated in a first place. The increased levels of HIV-1 co-receptors CXCR4

and CCR5 on CD4+CD32+ T cells on healthy individuals argue in favor of this concept (Hogan et al., 2018;

Wittner et al., 2018). In addition, a recent study described tissue resident memory T cells from the cervical

mucosa expressing CD32 as enriched for several proteins associated to HIV-1 susceptibility (Cantero-Pérez

et al., 2019). CD32+CD4+ T cells could represent a pool of recently infected cells as drug penetration in tis-

sues can be insufficient to suppress viral replication (Lorenzo-Redondo et al., 2016; Estes et al., 2017; Roth-

enberger et al., 2019). Accordingly, CD32 expression is induced upon infection with HIV-1 in vitro (Descours

et al., 2017; Abdel-Mohsen et al., 2018; Badia et al., 2018). Furthermore, in human lymphoid and gut tissues,

CD32 mRNA expression was associated with persistent HIV-1 mRNA replication (Hogan et al., 2018; Noto

et al., 2018) which could indeed be explained by poor cART penetration unable to block residual HIV-1

replication. A relationship between active HIV-1 transcription and the CD32 gene has been already sug-

gested (Abdel-Mohsen et al., 2018; Vasquez et al., 2019). Whether up-regulation of CD32 mRNA is a direct

result of HIV-1 transcription or T-cell activation is still unknown. In this regard, our multidimensional reduc-

tion analysis revealed that CD32+CD4+ memory T cells have a high activation/exhaustion profile and clus-

tered phenotypically with distinct activated/exhaustedmemory T-cell subsets expressing HLA-DR, PD-1, or

TIGIT during suppressed viremia. This is in agreement with Badia et al. (2018) who has shown, following

ex vivoHIV-1 infection in activated and resting cells or in PBMCs fromHIV-1+ individuals, that CD32 expres-

sion is a marker of activation in a subset of CD4+ T cells both in uninfected controls and in HIV-1+ individ-

uals. These authors state that establishment of HIV-1 latency may be the consequence of infection in

CD4+T cells within a narrow window of time after activation. Thus, CD32 expression may signal a transition

state to or from a fully susceptible phenotype. Our data provide further evidence that CD32 labels a highly

activated/exhausted subset of memory CD4+ T cells that might favor subsequently an HIV-1 enrichment in

these cells.

Indispensable for the characterization of CD4+CD32+ T cells as latent HIV-1 reservoirs is to determine if

they contain replication-competent virus and can resume to viral production. The current gold stan-

dard, the quantitative viral outgrowth assay (qVOA), requires large amounts of cells. Given the rarity

of CD32+ CD4+ T cells in mice, we used intracellular p24 staining after in vitro latency reversal as re-

ported previously. We found a relative enrichment of p24 production in CD4+CD32+ memory T cells

similar in magnitude (about ten times) than the increase in CA HIV-1 DNA. However, overall

CD32+CD4+ T cells constituted only a small portion of the total p24 inducible cellular reservoir (<5%

of total p24 producing cells). Similar findings were reported in human lymph nodes (Abdel-Mohsen

et al., 2018). Clearly, the presence of p24 alone, although produced in an advanced stage of the

HIV-1 replication cycle, does not prove that the resulting viruses are correctly assembled, released,

and infectious. Furthermore, a single round of stimulation with PMA/ionomycin for 24 hr only does

not suffice to induce all replication-competent viruses (Ho et al., 2013; Laird et al., 2013). Unfortunately,

there is currently no assay that can accurately activate the entire replication-competent fraction. Near

full-length DNA sequencing does not take inducibility of viral gene transcription into account (Josefs-

son et al., 2013), and qVOA largely underestimates the replication-competent fraction (Ho et al., 2013).

Taken together, our data underline that CD4+CD32+ memory T cells are enriched for p24 production

after latency reversal but represent a small and negligible portion of the total inducible p24 producing

cells.

Finally, the clinical relevance of thememory CD32+ CD4+ T cells as long-term viral reservoir remains difficult

to estimate at this point in time. We observed a correlation of CD32 expression with the combined expres-

sion of all activation markers. Highly activated T cells are generally regarded as rather short lived (Chun

et al., 2005; Noto et al., 2018) but their contribution to HIV-1 persistence is widely accepted (Hatano

et al., 2013; Chavez, 2015; Deeks et al., 2016; Khoury et al., 2016; Lee et al., 2019). Consequently, for

HIV-1 infection to persist, activated reservoirs are required for continous replenishment either by ongoing
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viral replication (Martinez-Picado and Deeks, 2016) or by cellular proliferation (Chomont et al., 2009). Since

CD32 was shown to promote immune activation in CD4+ T cells in vitro (Holgado et al., 2018), it is tempting

to speculate that CD32 itself could induce and maintain activation leading to preferential vulnerability to

infection. The results of the cluster analysis reinforces this hypothesis by showing phenotypic similarities

and a high number of clusters in the memory CD32+ CD4+ T cells as compared to the CD32+ CD8+

T cells. This in turn would question its role as a long-lived reservoir. Finally, there was a significant upregu-

lation of PD-1 in CD32+ vs CD32- cells producing the inducible translation-competent virus after PMA stim-

ulation. Interestingly, Noto et al. have associated CD32+PD1+CD4+ T cells from lymph nodes with the high-

est levels of HIV-1 transcription (Noto et al., 2018).

In conclusion, the present work highlights that tissue-resident CD32+CD4+ memory T cells represent

different cellular subsets that are highly activated, enriched for total HIV-1 DNA, and produce P24 upon

latency reversal. Despite a relative enrichment, CD32+CD4+ T cells form an overall negligible portion of

the inducible P24 producing cells. Our findings support that CD32 expression is linked to immune activa-

tion in tissues which may explain the enrichment of CA HIV-1 DNA in CD32+CD4+ memory T cells. More

distinctive markers to target the silent and replication-competent HIV-1 reservoir are still needed.

Limitations of the study

We acknowledge several limitations to our study. The limited life span of humanized mice allowed cART

therapy for a maximum duration of eight weeks in our study design. This duration clearly differs from pa-

tient cohorts investigating HIV-1 latency after several years of suppressed viremia. Therefore, we cannot

exclude the impact of short-lived reservoirs with decay rates above eight weeks (Palmer et al., 2011) and

that the reservoir dynamics in CD32 + T cells derived from our latency model could be different than in pa-

tients with a longer treatment duration. This could potentially explain the lower relative enrichment in our

humanizedmice as compared to human PBMCs (Darcis et al., 2020). In addition, the quantity of blood avail-

able for longitudinal sampling and of human cells in tissues is also extremely limited in humanized mice.

Lastly, PMA/ionomycin’s activation used here to measure P24 producing cells might be able to induce

only a fraction of the cells harboring translation-competent viruses in the humanized mice. A significant

fraction of p24 producing cells does not also produce intact viral particles that are replication competent.

Therefore, we induce probably only one part of the translation-competent virus in our study. However, the

HIV-1 flow technique, by using 2 different P24 antibodies, provides a specific staining of the P24+ cells and

allows us to compare accurately between CD32+ CD4+memory T cells and their CD32-CD4+ counterpart,

the translation-competent virus induced by PMA/ionomycin.
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SUPPLEMENTAL INFORMATION  
 

Transparent methods section 
 

NSG mice immune reconstitution, HIV-1 infection and treatment with cART 
NSG (NOD/LtSz-scid/IL2Rγnull) mice were purchased from Jackson Laboratory, USA. All animal experiments 

were performed in accordance with the Animal Welfare Structure of the Luxemburg Institute of Health (LIH) 

(protocol number: LRTV 1402) and complied with the national legislation and guidelines for animal 

experimentation. Juvenile (3-4 weeks of age) NSG mice were engrafted as previously published (Singh et al., 

2012). Briefly, mice were conditioned by two intraperitoneal Busulfan injections (20 mg/kg, Busilvex®) 24 

and 12 hours before transplantation. CD34+ hematopoietic stem cells were isolated from human cord blood, 

provided by the Blood Bank of the University Hospital (Liège, Belgium), by magnetic activated cell sorting 

(MACS), using the CD34+ progenitor cell isolation kit (Stem Cell Technologies, Vancouver, Canada). 

Subsequently 2x105 freshly isolated CD34+ cells were transplanted into each NSG mouse by intravenous 

injection. Mice were bled at 12 and 24 weeks post-transplantation to determine human immune cell 

reconstitution by flow cytometry.  

Animals with ≥ 20% of circulating human CD45+ cells at 24 weeks post-transplantation were infected by two 

intraperitoneal injections of a HIV-1 laboratory adapted strain (JRCSF, 10.000 TCID50) within 24 hours. 

Infection was monitored every 2 weeks on blood samples collected by submandibular bleeding for CD4+ T 

cell counting using flow cytometry analysis and for viral load measurement (see below). cART treatment was 

initiated 1 week (early treated) or 8 weeks (late treated) post infection and continued for a total of 8 weeks 

in both groups using a single tablet regimen of dolutegravir/abacavir/lamivudine (Triumeq®, ViiV Healthcare) 

provided in the drinking water. The tablets were crushed and dissolved in Sucralose MediDrop® (Clear H2O, 

Portland, USA) at the therapeutic concentration of 3.40 mg/ml. Drinking solution was refreshed twice per 

week and volumes were monitored to follow up consumption. At the end of the protocol, mice were 

anesthetized using a mixture of ketamine and xylazine, blood samples were collected via cardiac puncture 

and tissues were harvested for downstream analysis.  

 

Experimental design 
The study was structured into three arms (Figure 1). A first group of mice infected with HIV-1 received 

treatment from one week post infection on (early treated, n= 58). The second group was set on therapy at 

week seven post-infection (late treated, n=42) and a third group of HIV-1 infected mice never received 
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antiretroviral drugs (untreated, n=20). After eight weeks of cART treatment, animals were sacrificed (n= 43 

and 34 in early and late treated groups). Some animals was kept after cART was discontinued to measure 

time to viral detectability after treatment interuption. These groups of “viral rebound” were monitored for 

another six weeks (n=15 for early- and n=8 for late treated mice) or longer if they remained undetectable in 

plasma viral loads. Untreated animals were sacrificed at the matched time points with the early and late 

treated mice respectively (n=10 for each group). Non-infected and non-treated humanized mice (healthy 

animals) were added as controls when necessary for phenotyping. Monitoring of viral load upon HIV-1 

infection and under cART treatment was performed using absolute ddPCR measurement every two weeks.  

 

Organ collection, processing and isolation of cells 

Organs were collected at necropsy, washed in cold RPMI and processed immediately for cell isolation. Lymph 

nodes were dissected from the cervical, axillary, brachial and inguinal locations. Spleens and lymph nodes 

were gently disrupted in cold PBS using the plunger of a syringe. Bone marrow (BM) were obtained from 

tibias and femurs. Both ends of bones were opened and BM flushed out by short centrifugation at 600g 

during 30 seconds at room temperature. BM cells, splenocytes and lymph node suspensions were passed 

through 70 μm nylon cell strainers (BD Biosciences, Franklin-Lakes, New Jersey, USA) and centrifuged 10 min 

at 400g and 4°C. Splenocytes were resuspended in fresh ACK (Ammonium-Chloride-Potassium) solution (in 

house made) for 5 minutes to lyse red blood cell followed by two washes with RPMI 1640 (GIBCO Life 

technologies, Thermo Fisher Scientific). 

Quantification of HIV-1 plasma and tissues viral load 
Plasma viral load was measured by an in-house droplet digital PCR (ddPCR) assay. Input volumes of 100 µl 

were used for RNA extraction using the MagNA Pure Compact nucleic acid isolation kit (Roche, Basel, 

Switzerland) according to the manufacturer’s protocol by diluting 30 µl of mice plasma in 70 µl of PBS. The 

PCR reaction mixture was loaded into the Bio-Rad QX200™ Droplet Generator (Bio-Rad laboratories, 

Hercules, CA, USA). Emulsification droplets were formed following the manufacturer’s instructions. Primers 

and probes were designed as reported previously (Jones et al., 2014). Total RNA was amplified by ddPCR 

PalmerddPCR Advanced kit for Probes. Droplets were analyzed on QX200 Droplet Reader (BioRad). The limit 

of detection is 235 copies/ml (33). Data were analyzed with the QuantaSoft software (Bio-Rad laboratories, 

Hercules, CA, USA). To measure HIV-1 RNA in different tissues, twelve humanized mice (as described above) 

were infected by two intraperitoneal injections of HIV-1 (JRCSF, 10.000 TCID50) within 24 hours. One week 

after infection, six mice were sacrificed for downstream analysis and six mice started cART as previously 

described and continued for a total of eight weeks. Plasma viral load was monitored every 2 weeks on blood 

samples collected by submandibular bleeding. At the end of cART treatment, mice were sacrificed for organ 
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collection and all organs were processed immediately for cell isolation using the NucleoSpin® Tissue kit 

(Macherey-Nagel, Düren, Germany). 300uL lysis buffer was used for RNA extraction in the spleen and the 

bone marrow and 100uL of lysis buffer was used for the Lymph nodes. Input volumes of 100 µl were used for 

plasma RNA extraction using the QIAamp Vrial RNA Mini Kit (Qiagen) according to the manufacturer’s 

protocol. Plasma and organ viral loads were measured by our in-house droplet digital PCR (ddPCR) assay as 

described above.  

 
Quantification of total Cell-associated (CA)-HIV-1 DNA and CA-HIV-1 RNA from 
human CD45+ cells 
Human CD45+ cells from organs were purified by positive selection using magnetic beads (CD45 MicroBeads, 

Miltenyi Biotec, Bergisch-Gladbach, Germany) following the instructions of the manufacturer and pelleted. 

Total DNA was extracted from spleen, lymph nodes, lungs and bone marrow cells by manual extraction using 

the NucleoSpin® Tissue kit (Macherey-Nagel, Düren, Germany) according to manufacturer’s instructions. 

Aliquots of eluted samples were frozen at −80 °C unƟl total CA HIV-1 DNA quantification by ddPCR as 

previously reported (Rutsaert et al., 2019). RNA was isolated from human CD45+ cells using the innuPrep RNA 

Mini Kit 2.0 (Westburg, Berlin, Germany), then reverse transcribed into cDNA using qScript cDNA SuperMix 

(Quanta bio, Beverly, Massachusetts, USA) in a total volume of 20µl according to manufacturer’s protocol. 

CA HIV-1 RNA was measured by ddPCR (Bio-Rad, Hercules, California) in triplicates as previously described 

(Van Hecke et al., 2019) with the primers/probe as described above for HIV-1 DNA. Three reference genes 

(B2M, ACTB, and GAPDH) per cDNA samples were assessed by qPCR to normalize for RNA input. Copies of 

CA-RNA were divided by the geometric mean of the reference gene related to the theoretical number of cells 

(expressed in copies per million cells). 

 
Flow cytometry, cell sorting and image cytometry 
Detailed phenotyping of human B and T cells was performed using 2x10^6 single cells from each organ. Cells 

were washed with PBS containing 1%FBS (Gibco™, Thermo Fisher Scientific, Waltham, Massachusetts, USA) 

and stained for 30 min at 4°C with fluorochrome-labeled monoclonal antibodies (human reactivity if not 

indicated differently): CD4-BUV395 (SK3), CD3-BUV496 (UCHT1), CD8-BUV805 (SK1), CD279-BV421 

(EH12.2H7), CD28-BV605(CD28.2), CD27-BV650(M-T271), CD197-PECF-594 (150305), murineCD45RO-PECy5 

(30-F11) from BD Biosciences, HLA-DR-BV510 (L243), CD127-BV711(HIL-7R-M21), CD32-PE (FUN-2), TIGIT-

APC (A151536) from Biolegend (San Diego, CA, USA) and LIVE/DEAD fixable Near-IR cell dye (Thermo Fisher 

Scientific). Cells were fixed for 1h at 4°C using 1X BD Lysing solution (BD Biosciences, Cat n°: 349202) before 

acquisition. Samples were acquired on a FACS Fortessa SORP 5 laser instrument (BD Biosciences) and 
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analyzed with the Kaluza (version 2.1, Beckman Coulter, Brea, California, USA) and Flow Jo (version 10, BD 

Biosciences) softwares. A Two-way cell sorting was done by staining single cells derived from organs with 

CD3-BV510 (UCHT-1), CD4-PECy7 (RPA-T4), CD8-BV711 (RPA-T8), CD19-APC (HIB19), CD14-APC (61D3), 

CD45RA-FITC (HI100), murineCD45-PECy5 (30-F11) (BD Biosciences) and CD32-PE (FUN-2) (Biolegend), and 

LIVE/DEAD fixable Near-IR cell dye (Thermo Fisher Scientific). CD4+CD45RA- memory T cells were sorted 

based on their expression of CD32 into positive and negative subsets using BD Influx instrument (BD 

Biosciences). For visualization of sorted cells (CD32+CD4+ T cells and B cells) sorting was executed with five 

laser ARIA cell sorter (BD Biosciences) and purified populations were acquired with the ImagestreamX (Amnis 

Corporation, Seattle, WA, USA). mCD45-FITC (30-F11), CD4-PE-CF594 (RPA-T4), CD20-BV421 (2H7), CD3-

BV510 (UCHT1), CD32-APC (FLI8.26) (BD Biosciences), CD19-PE (SJ25C1) (Biolegend), CD14-PECy5 (61D3) 

(eBiosciences) and LIVE/DEAD fixable Near-IR cell dye (Thermo Fisher Scientific).The detailed gating strategy 

for all cytometry application on CD4+ T cells for strict exclusion of CD19, CD14 and doublets is given in 

supplemental Figure 3. PBMCs from two HIV-1 infected patients under cART for more than 2 years  were also 

analyzed as previously described. The study was approved by the Ethical Committee of Luxembourg 

(201307/10).  The two patients provided their written informed consent to participate in the study.   

 

Measurement of CD32a and CD32b mRNA 
To determine the CD32 isoform expressed in the memory CD4 + T cells, BM cells and splenocytes from 3 mice 

infected with HIV-1 and treated early with cART during 8 weeks were isolated as described above. Nucleic 

acids were extracted from sorted CD32+CD45RA-CD4+ T cells, CD32-CD45RA- CD4+ T cells and a pool of CD14+ 

and CD19+ cells from the spleen and the bone marrow using Nucleospin RNA XS (Marcherey Nagel, Germany) 

and treated with DNase (DNA-free kit, Thermo Fisher Scientific) following manufactor’s instructions. For the 

CD32+CD45RA- CD4+ T cell fraction, cells from the 3 spleens or from the 3 BM were pooled before RNA 

extraction whereas the nucleic acids from the two other fractions of cells (CD45RA- CD4+CD32- T cells and a 

pool of CD14+ and CD19+ cells) were extracted for each mouse individually. Reverse transcription was 

executed using the High-Capacity RNA-to-cDNA™ Kit (Thermo Fisher Scientific) according to manufacturer’s 

instructions. Cellular mRNAs were quantified using TaqMan™ Gene Expression Assays (all from Thermo Fisher 

Scientific): CD32A: Hs01013401_g1, CD32B: Hs00269610_m1, GAPDH: Hs02758991_g1 using Real-Time PCR 

(ABI 7500 Fast, Thermo Fisher Scientific). Non-template control wells were included in every qPCR run and 

were consistently negative.  

 

Cluster analysis and multidimensional reduction  
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To investigate the relationship between CD32 expression and the activation status of CD4+ and CD8+  T cells, 

three groups were without treatment (n=8), early treatment (n=12) and late treatment (n=10). The three 

groups of mice were phenotyped at four weeks and eight weeks of HIV-1 infection or four and eight weeks 

of treatment. Splenocytes were harvested and flow cytometry was performed as described above. Between 

207 and 793506 live CD3+CD14-CD19- T cells were gated for each sample using FlowJo (BD Bioscience, version 

10.7). Live CD3+CD14-CD19- T cells were exported as FCS files and uploaded into the Cytobank environment 

(Beckman Coulter). After proper scaling for each marker (Mazza et al., 2018) the FlowSOM algorithm (Van 

Gassen et al., 2015) was used to generate 49 clusters grouped in ten metaclusters. FlowSOM parameters 

were as follow: 4 millions of proportionally selected events; clustering channels: CD4, CD8, CD145RA, CCR7, 

TIGIT, PD1, HLADR, CD32 and CD38; iteration number: 10. Hierarchical analysis, heatmap and statistical 

analyses (Kruskal Wallis tests) were done in Qlucore version 3.6 (Lund, Sweden). 

 

Quantification of translation-competent viral reservoirs 

The HIV-1 Flow assay was used as previously described (Pardons et al., 2019) to quantify the amount of the 

p24 producing HIV-1 reservoir in human CD4 + CD32 + versus CD4 + CD32 – T cells. Briefly, cells were harvested 

from spleen and bone marrow of HIV-1 infected cART suppressed mice (late protocol, as described above) 

and cultured in RPMI (10% Fetal Bovine Serum and 2% Penstrep) supplemented with antiretroviral drugs 

(200nM raltegravir, 200nM lamivudine). A protein transport inhibitor (Golgi Plug, BD Biosciences) was added 

according to manufacturer’s instruction 1 hour before stimulation and maintained during stimulation with 

PMA (162nM/mL) and Ionomycin (1μg/mL) for 24 hours. Cells were stained for surface markers and the 

intracellular p24 protein (anti-p24 PE, clone: KC57, Beckmann Coulter and anti-p24 APC, clone: 28B7, 

MediMabs, Canada) using the BD Cytofix/Cytoperm staining kit (BD Biosciences). Extracellular expression of 

CD32 combined with activation/exhaustion markers and the intracellular staining of p24 was performed as 

described above. 

 

Statistical analysis 
Statistical analysis was performed using GRAPHPAD PRISM software. Groups were compared using 

nonparametric Mann-Whitney U test or Kruskal Wallis with Dunn correction for multiple comparison. A p-

values < 0.05 was considered to be significant. Two-tailed Spearman correlation coefficient was calculated 

for several comparisons (r and p values indicated on respective graphs). Mantel-Cox rank test was applied 

for Kaplan Meyer curve comparison. Paired or unpaired Wilcoxon signed-rank test were used when indicated. 

For all statistical testings a p-values < 0.05 was considered to name as significant in the text. The following 
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symbols were used as abbreviations for results of statistical significance testing on figures, p values: * ≤ 0.05, 

**≤ 0.005, *** ≤ 0.0005, **** ≤ 0.00005, Abbreviation ns stands for non-significant. 
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Supplemental figures 
 

 
Figure S1 related to Figure1. Viral rebound after cART interruption in early versus late treated mice and 
HIV RNA content in tissues from viremic and virally suppressed mice. 
Individual values of HIV-1 RNA copies in log10 scale per ml of blood plasma over time after treatment 
interruption in light grey lines in mice treated early after 1 week of HIV-1 infection (A) and in mice treated 
late (B) (Group mean in bold black line). Four mice treated early reached undetectable viral load four or six 
weeks after treatment interruption. C. HIV-1 RNA content in different tissues of viremic and virally 
suppressed humanized mice. Twelve mice were infected with HIV-1 by two intraperitoneal injections of HIV-
1 JRCSF (10.000 TCID50) within 24 hours. Six mice were sacrificed one week after infection (viremic mice) 
and six mice were treated with cART during 8 weeks after one week of infection and sacrificed to measure 
viral load (VL, HIV-1 RNA) in the bone marrow (BM), in the lymph nodes (LN) and in the spleen (SP). One 
mouse did not reach HIV-1 RNA undetectability after 8 weeks of treatment. In the BM, HIV-1 RNA is not 
detectable after 8 weeks of cART whereas a mean of 100 copies/ng of total RNA was measured in the lymph 
nodes and in the spleen of the early treated mice. D). Plasma viral load of the viremic and virally suppressed 
humanized mice. Statistical testing was done using non-parametric Kruskal Wallis test with multiple 
comparison Dunn’s correction (* p< 0.05. ** p< 0.01, NS, non significant test, p> 0.05). 
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Figure S2 related to Figure 2. CD4+ T cells were preserved by ART in the spleen of humanized mice.  
Relative percentage of CD4+ T cells (A) and CD27 expression in CD4+ T cells (B). Statistical testing was done 
using non-parametric Kruskal Wallis test with multiple comparison Dunn’s correction (**p< 0.01, *** p< 
0.005, **** p < 0.001, ns, non significant test, p> 0.05). 
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Figure S3 Related to Figures 4 and Figures 5. Flow cytometry gating strategy for the phenotypic 
investigation of CD32+CD4+ T cells. 
Following a lineage gating strategy (top layer) we strictly gated on singlet cells and further excluded potential 
contaminations by gating on negative events for CD14 and CD19, leading to a highly pure CD32 dim T cell 
population. In contrast clear doublet cells of T and B cells are detected leading to a CD32 Bright population in 
the doublets CD3+CD14-CD19- and CD3+CD14-CD19+cells. 
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Figure S4 Related to Figures 4 and 5. Purity of CD4+CD32+ T cells before and after sorting from splenocytes 
of humanized mice using the established gating strategy (Figure S3).   
Representative plots depicting the expression of CD14/CD19 and CD4 in CD4+CD32+ T cells sorted from 
splenocytes of humanized mice. Cells were gated on lymphocytes (singlets and live cells) before (Pre-Sorting) 
and after (Post-Sorting) cell sorting of CD4+CD32+ T cells. The purity was assessed on four different mice 
revealing a mean purity of 98,85%. 
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Figure S5 related to Figure 5. Longitudinal expression of CD32 in CD4+ memory T cells from spleen 
Representative FACS plots of CD32 expression on B cells and CD4+ memory T cells (A). CD32 expression on 
CD4+ memory T cells from spleen did not differ significantly over time between treatment groups (B). Three 
groups of mice were infected with HIV-1: viremic, untreated mice (n= 12), mice receiving early cART 
treatment (n= 12) or late treatment (n= 10). 
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Figure S6 Related to Figure 5. CD32 expression on memory CD4+ T cells from different tissues is similar 
between the different treatment groups  
Expression of CD32 on CD4+CD45RA- T cells in blood (A), spleen (B), bone marrow (C) and lymph nodes (D) 
from flow sorted cells of healthy uninfected mice (n=8), early treated mice (n= 8), late treated mice (n=12), 
and untreated mice (n= 13). Statistical testing was performed using non-parametric Kruskal Wallis test with 
multiple comparison Dunn’s correction (**p< 0.01, ns, non significant test, p> 0.05). 
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Supplemental tables 
 

Table S1 Related to Figure S6. Descriptive statistics of CD32+CD4+CD45RA- T cells from different tissues given in Figure 
S6 related to Figure 5. 
 

  Groups of mice   
Tissues Healthy Early Treated Late Treated Untreated 
Blood     
Number of mice 8 11 12 4 
Mean  1.464 1.845 2.838 2.83 
Std. Deviation 1.001 0.7517 2.172 1.876 
Std. Error of Mean 0.3539 0.2266 0.6271 0.9378 
Spleen     
Number of mice 8 12 15 10 
Mean  0.9113 0.855 1.528 1.407 
Std. Deviation 0.5946 0.7943 1.494 0.963 
Std. Error of Mean 0.2102 0.2293 0.3857 0.3045 
Bone marrow     
Number of mice 8 8 12 7 
Mean  0.5188 2.398 2.455 2.776 
Std. Deviation 0.3728 2.499 1.88 1.879 
Std. Error of Mean 0.1318 0.8834 0.5426 0.7103 
Lymph nodes     
Number of mice 8 9 11 13 
Mean  0.315 0.5778 1.468 1.482 
Std. Deviation 0.2398 0.5523 1.681 0.8409 
Std. Error of Mean 0.847 0.1841 0.5068 0.2332 
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