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New platforms are needed for the design of novel prophylactic
vaccines and advanced immune therapies. Live-attenuated yel-
low fever vaccine YF17D serves as a vector for several licensed
vaccines and platform for novel candidates. On the basis of
YF17D, we developed an exceptionally potent COVID-19
vaccine candidate called YF-S0. However, use of such live
RNA viruses raises safety concerns, such as adverse events
linked to original YF17D (yellow fever vaccine-associated
neurotropic disease [YEL-AND] and yellow fever vaccine-asso-
ciated viscerotropic disease [YEL-AVD]). In this study, we
investigated the biodistribution and shedding of YF-S0 in
hamsters. Likewise, we introduced hamsters deficient in signal
transducer and activator of transcription 2 (STAT2) signaling
as a new preclinical model of YEL-AND/AVD. Compared with
YF17D, YF-S0 showed improved safety with limited dissemina-
tion to brain and visceral tissues, absent or low viremia, and no
shedding of infectious virus. Considering that yellow fever
virus is transmitted by Aedes mosquitoes, any inadvertent
exposure to the live recombinant vector via mosquito bites is
to be excluded. The transmission risk of YF-S0 was hence
compared with readily transmitting YF-Asibi strain and non-
transmitting YF17D vaccine, with no evidence for productive
infection of mosquitoes. The overall favorable safety profile
of YF-S0 is expected to translate to other vaccines based on
the same YF17D platform.

INTRODUCTION
Roughly 2 years after its first emergence in 2019–2020, more than 5
million people have succumbed to coronavirus disease 2019
(COVID-19), caused by severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) (https://coronavirus.jhu.edu/map.html). Mass
immunization is key to mitigating the expanding pandemic.1 A set
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of rapidly developed prophylactic vaccines plays a crucial role in
global immunization against SARS-CoV-2. Several of these vaccines
are first in class, based on novel platforms, including game-changer
mRNA vaccines and viral vector vaccines that are unprecedented in
both their high clinical efficacy and the incremental advance in break-
through innovation.2–4 However, a global vaccine supply shortage,
the dependence on an ultra-cold chain system in case of mRNA vac-
cines, and the continuous emergence of virus variants pose unmet
challenges.5,6 Unfortunately, the long-term effectiveness of current
SARS-CoV-2 vaccines is waning because of the combined effect of
(1) a rapid decay of virus-neutralizing antibodies (nAbs) over time
and (2) emergence of new variants escaping vaccine-induced immu-
nity.7–9 Furthermore, several first-generation COVID-19 vaccines
have a rather high reactogenicity. With the growing number of
vaccinated people, more cases and a wider spectrum of adverse effects
following immunization (AEFI), including severe adverse effects
(SAEs) such as myocarditis and life-threatening deep-venous
thrombosis, are described.10–15 In summary, there is an urgent to
develop new and improved second-generation COVID-19 vaccines
to eliminate the pandemic.

Recently, we used an alternative vaccine platform that uses the fully
replication-competent live-attenuated yellow fever (YF) vaccine
YF17D as a vector16 and developed a virus-vectored SARS-CoV-2
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vaccine candidate (YF-S0) that expresses a stabilized prefusion form
of SARS-CoV-2 spike protein (S0).17 YF-S0 was shown to induce
vigorous humoral and cellular immune responses in hamsters
(Mesocricetus auratus), mice (Mus musculus), and cynomolgus
macaques (Macaca fascicularis) and was able to prevent COVID-
19-like disease after single-dose vaccination in a stringent hamster
model. Because of its YF17D backbone, YF-S0 could serve as dual
vaccine to also prevent yellow fever virus (YFV) infections, which
should provide an added benefit for populations living in regions
at risk for YFV outbreaks.18

In addition to preclinical efficacy, development of such a new
vaccine requires in-depth evaluations of its safety to support pro-
gression from preclinical study to clinical trials. In particular for
live-attenuated viral vaccines such as YF-S0, the biodistribution of
the vaccine virus after administration needs to be assessed19 to
understand the viral organ tropism and hence to exclude potential
direct harm to specific tissues. Our vaccine candidate, YF-S0,
showed an excellent safety profile in multiple preclinical models,
including in non-human primates (NHPs) and interferon-deficient
mice and hamsters.17 However, use of such a recombinant YF17D
vaccine entails some potential concerns.19 In particular, replication
and persistence of YF-S0 in tissues and body fluids pose a theoretical
risk for YF vaccine-associated viscerotropic disease (YEL-AVD) and
YF vaccine-associated neurotropic disease (YEL-AND), which are
originally linked to parental YF17D.20 With this regard, parental
YF17D vaccine is commonly used as benchmark for direct compar-
ison in safety assessment.19

Here, we investigated the biodistribution and shedding of YF-S0
following vaccination in hamsters, with the following aims: (1) to un-
derstand to what extent YF-S0 causes viremia resulting in virus
dissemination to vital organs; (2) to evaluate the risks of YF-S0 for
YEL-AVD/AND by confirming its transient and self-limited replica-
tion in vivo,17 restricting the risks for YEL-AVD/AND; and (3) to
determine to what extent viral RNA remains detectable in body
secretions and, if so, (4) whether this poses any environment risks
for shedding of recombinant infectious virus. Furthermore, YFV is
a mosquito-borne virus, and YF-S0 uses YFV-derived YF17D as a
vector. Recombinant YF-S0 might hence, though highly attenuated,
pose an environmental risk due to unforeseen phenotypical changes.
Taking this theoretical consideration into account, we tested the
infectivity of YF-S0 on Aedes aegypti (Ae. aegypti) mosquitoes to
assess its transmission potential. Ae. aegypti was selected as target
mosquito species because of its well-known high vector competence
for YFV.21 It is well documented that wild-type YF-Asibi can infect
and disseminate in Ae. aegypti, while YF17D only occasionally infects
the midgut and is unable to disseminate to secondary organs.22,23

Therefore, these two YFV strains were used as controls to assess trans-
mission of YF-S0 by a competent vector.

Finally, we corroborate the favorable safety profile of YF-S0 by report-
ing limited dissemination and shedding in vaccinated hamsters and
no risk for mosquito-borne transmission.
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RESULTS
Tissue distribution of YF-S0 and parental YF17D in hamsters

For our assessment, we chose wild-type (WT) Syrian golden hamsters
as a preferred small animal model of YFV infection24 and injected
them with a high dose (104 plaque-forming units [PFU]) of either
YF17D (n = 6) or YF-S0 (n = 6) via the intraperitoneal (i.p.) route
to achieve maximal exposure; primary pharmacodynamics have
been previously documented17 and are confirmed here by consis-
tently high seroconversion rates (at least 80%) to YFV-specific
nAbs (Figure S1). Likewise, a 104 PFU i.p. dose was shown to elicit
saturating levels of SARS-CoV-2 nAbs in the hamster model, similar
to a two-dose regimen using a 10-fold lower inoculum.17 As methods
control, we inoculated STAT2 knockout (STAT2�/�) hamsters with
104 PFU YF17D (n = 2). STAT2�/� hamsters are deficient in antiviral
type I and type III interferon responses25 and therefore prone to un-
controlled flavivirus replication.26 Tissues sampled for analysis were
chosen on the basis of biodistribution data available from non-human
primates and humans. In macaques, detection of YF17D RNA has
been reported in lymph nodes, spleen, and liver at 7 days after subcu-
taneous inoculation.27 Likewise, viral RNA is widespread and
abundantly found in spleen, liver, brain, kidney, and other organs
in patients who developed YEL-AVD.20,28 On the basis of this
knowledge, we collected spleen, liver, brain, and kidney as the most
common target organs to assess the risks for YEL-AVD and YEL-
AND. Ileum and parotid gland were collected as additional excretory
tissues and lung as the main target of COVID-19 (Figure 1A). From
our previous experience,17 we observed that the replication of YF17D
or YF-S0 is transient and well tolerated in WT hamsters. Tissue anal-
ysis in hamsters was thus performed 7 days post-inoculation (dpi)
(i.e., a few days after peak of viremia), in line with similar studies
performed for chimeric YF17D vaccine in macaques before27 and at
a time point at which STAT2�/� hamsters needed to be euthanized
for humane reasons.17

Viral RNA above detection limits in YF17D-vaccinated WT ham-
sters was mostly limited to spleen (RNA detected in 4 of 6 animals),
with the exception of a single hamster in which viral RNA was wide-
spread to the brain, parotid gland, and lung (Figure 1B; Table S1).
Detection of YF-S0 was markedly less frequent and restricted to
only kidney (2 of 6) and lung (1 of 6) (Figure 1B). Overall, in either
group RNA level was low and barely detectable by sensitive RT-
qPCR, indicative for limited replication in WT hamsters. In
contrast, unrestricted replication of virus to high viral loads was
observed in STAT2�/� hamsters (Figures 1B and 1C). Importantly,
no viral RNA nor infectious virus could be detected in the brains of
YF-S0-vaccinated hamsters, suggesting a low associated YEL-AND
risk (Figures 1D and 1E).

Viremia is considered a key indicator for the risk for developing
YEL-AVD. Thus, longitudinal blood sampling was conducted as
shown in Figure 2A. Kinetics of viral RNA in serum as proxy for
viremia have been reported earlier for WT hamsters vaccinated
with YF17D or YF-S017 and are discussed here in comparison
with respective data from STAT2�/� controls (Figure 2B). Viremia
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Figure 1. Biodistribution of YF-S0 in hamsters

(A) Schematic of hamster vaccination and organ collection. Hamsters were inoculated i.p. with 104 PFU/mL of either YF17D or YF-S0 and sacrificed 7 days later. Organs from

4 different experimental groups, including sham-vaccinated wild-type (WT) hamsters and YF17D-vaccinated STAT2�/� (knockout [KO]) hamsters as respective negative and

positive controls, were collected and divided for RNA extraction and virus isolation. (B) Viral RNA load by RT-qPCR. (C) Virus isolation by TCID50 assay. For sham and STAT2

KO, only PCR-positive samples were analyzed. (D and E) Heatmap representing positivity rates by organ and experimental group on the basis of the results of RT-qPCR (D) or

TCID50 assay (E). Bars in (B) and (C) represent median values. N/A, not applicable.
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could be detected consistently in all YF17D-vaccinated WT
hamsters (6 of 6) starting at 1 dpi and lasting for a median of
2.5 days (95% confidence interval, 1–4 days); in contrast, viral
RNA was detected only once at 3 dpi in a single YF-S0-vaccinated
Molecul
hamster (1 of 6) (Figure 2B; Table S2). In STAT2�/� hamsters,
YF17D grew unrestrictedly to markedly increased viral RNA levels
(Figure 2B), readily detectable by virus isolation (Figure S2). Inte-
gration of data over the course of immunization (area under the
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Figure 2. Shedding of YF-S0 by vaccinated hamsters

(A) Schematic of vaccination and specimen collection. Hamsters were inoculated as in Figure 1A, and serum, urine, feces, and buccal swabs were serially sampled at

indicated time points. (B–E) Viral RNA load by RT-qPCR. (F–I) Area under curve (AUC; copies� day) calculated in GraphPad Prism 8; the Mann-Whitney test was used for the

statistical analysis, with p > 0.05 marked as non-significant (ns); and **p% 0.01. Serum RNA data for YF17D and YF-S0-vaccinated WT hamsters as previously published.

LoQ, limit of quantification; LoD, limit of detection; dpi, days post-inoculation.
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curve [AUC]) indicated a significant reduced overall serum virus
load in YF-S0-vaccinated animals (Figure 2F).

Limited shedding of YF-S0 and parental YF17D RNA

As shedding of viral RNA in urine after YF17D vaccination has been
reported,29 we sampled different body fluids to investigate respective
virus levels (Figure 2A). Within all longitudinally sampled specimens,
viral RNA was detected only sporadically in urine (1 of 56 and 3 of
58), feces (2 of 65 and 1 of 66), and buccal swabs (1 of 66 and 3 of
218 Molecular Therapy: Methods & Clinical Development Vol. 25 June 2
66) of both YF17D and YF-S0-vaccinated hamsters, respectively,
mostly at very low copy numbers and not linked to viremia
(Figures 2C–2E and S3; Table S3–S5). Noteworthy, viral RNA could
be detected, if at all, only within the first 11 dpi, clearly indicating that
viral replication was self-limiting, leading to the final elimination of
the live viral vector from all tissues. Also, there was no significant dif-
ference in AUC between both groups (Figures 2G–2I). The potential
risk that YF-S0 could be spread through excrement of vaccinated in-
dividuals should hence be as low as for YF17D. In addition, no viable
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virus could be isolated from urine samples, with RNA counts as high
as 108 copies/mL (not shown), in line with no clinical evidence for
secondary spread in urine, matching long-standing field experience
for YF17D.

Abortive infection of YF-S0 on yellow fever virus-competent

vector Ae. aegypti

YF-S0 is derived from mosquito-borne YFV, and human-to-human
transmission by a competent mosquito vector could theoretically
lead to unintentional exposure to the vaccine, including in im-
mune-compromised people.30 Thus, the transmission risk of YF-S0
should be excluded regarding main indicators of mosquito vector
competence21,31,32 (Figure 3A): (1) sufficient virus ingestion from in-
fectious blood meal, (2) productive infection of virus in mosquito
midgut (midgut infection barrier [MIB]), and (3) virus escapes
from midgut barrier (MEB) (i.e., dissemination to parenteral tissues
to establish sufficiently high virus loads in salivary glands to enable
transmission). To this end, Ae. aegypti mosquitoes, as the species of
YFV-competent vector,21 were given infectious blood meals with no
virus, YF17D, YF-S0, or wild-type YF-Asibi strain as positive con-
trol.22,23 Samples as collected on day 0 in whole mosquitoes (ingestion
step), on day 14 in thorax and abdomen (virus infection and replica-
tion in mosquito midgut; marked as main body), and on day 14 in
head, legs, and wings (dissemination) were determined using both
RT-qPCR and a CPE-based assay (50% tissue culture infective dose
[TCID50]) for virus infection and replication (Figure 3A). Consid-
ering the relatively long extrinsic incubation period of YFV21 in
mosquitoes and particularly that of YF17D,23 earlier time points
were not considered for analysis.

Experimental feeding was equally efficient for all three virus groups
regarding both viral RNA and infectious virus recovered
(Figures 3B and 3C). However, 14 days after feeding, viral RNA
was detected exclusively in specimens from the YF17D group (8 of
15) and YF-Asibi group (8 of 23) but none from the YF-S0 group.
Importantly, infectious viral particles were detectable only in the
YF-Asibi group, with virus loads as high as about 106 TCID50/body
on average (Figure 3C). For dissemination beyond the MEB, the re-
maining head, legs, and wings of each six virus-positive mosquitoes
with highest body virus loads from the YF17D and YF-Asibi groups,
respectively, and six randomly chosen specimens from the YF-S0
group were evaluated. All these specimens from the YF-Asibi group
(6 of 6) scored positive for dissemination, compared with none
from the YF-S0 or YF17D groups (Figures 3B and 3C). These results
suggest that YF-S0 is able neither to pass theMIB for midgut infection
nor to escape from the midgut (MEB) for dissemination (Figures 3D
and 3E).

DISCUSSION
The live-attenuated YF17D vaccine is considered one of the most
powerful and successful vaccines and has been used in humans for de-
cades.33 Its well-known characteristics of stimulating both vigorous
humoral and cellular immune responses, as well as favorable innate
responses, are of interest for other vaccine targets using the YF17D
Molecul
genome as a backbone.16 We recently generated a particularly potent
YF17D-vectored vaccine candidate, YF-S0, against SARS-CoV-2
infection, inserting the non-cleavable spike protein of SARS-CoV-2
(S0) between the E and NS1 region of YF17D.17 This construct serves
as antigens to induce vigorous immune responses against both SARS-
CoV-2 and YFV infections.17

Apart from YF-S0, YF17D is currently the only fully replication-
competent viral vector that is part of any licensed recombinant live
viral vaccine in wide use for human medicine, that is, in the two
licensed human vaccines, JE-CV (against Japanese encephalitis; Imo-
jev34) and CYD-TDV (against all four serotypes of dengue virus;
Dengvaxia35). Additional YF17D-based vaccine candidates are in
different stages of (pre)clinical development, including vaccines
against other flaviviruses (West Nile virus: ChimeriVax-WN0236;
Zika virus: YF-ZIKprM/E37) or non-flaviviruses (HIV: rYF17D/SIV-
Gag45-26938; Lassa virus: YFV17D/LASV-GPC39; chronic hepatitis B
virus: YF17D/HBc-C40). Like other YF17D-vectored vaccines, YF-S0
triggers vigorous protective immune responses, including high levels
of SARS-CoV-2 neutralizing antibodies after single-dose vaccination
in hamsters, mice, and cynomolgus macaques.17 However, all these
YF17D-vectored vaccines share the theoretical concerns of SAEs
associated with the parental YF17D vaccine, such as YEL-AVD (0.4
per 100,000) and YEL-AND (0.8 per 100,000),19,20,41,42 notably
despite little (pre)clinical evidence or reports from post-marketing
surveillance.43 In contrast, though originally contraindicated in
more vulnerable people, such as children, pregnant women, people
living with HIV or diabetes, and older persons, growing evidence
now suggests increased risk from YF17D.44,45

To temper the safety concerns, the viscerotropism and neurovirulence
of YF-S0 were compared head-to-head with parental YF17D virus by
investigating the biodistribution and viremia following administra-
tion of either vaccine virus in hamsters. We demonstrate that parental
YF17D can spread systemically and viral RNA can be detected in the
spleen, brain, parotid gland, and lung in YF17D-vaccinatedWT ham-
sters. However, replication of YF17D remains restricted, resulting in
infectious virus loads below detection limits. Compared with YF17D,
detection of YF-S0 was further limited, with minute amounts of viral
RNA in the kidney and lung. Unrestricted virus replication to high
viral loads as cause of viscerotropic or neurotropic disease was
observed only in STAT2�/� hamsters, in line with the essential role
innate interferon signaling plays in live vaccines30,46 and control of
viral infections in general.47 In addition, in YF-S0-vaccinated WT
hamsters, detection of viremia was rare (Figure 2B) and, importantly,
less frequent (1 of 6) and markedly lower in magnitude (AUC) and
duration (1 day) compared with parental YF17D (6 of 6 for
>2 days). A limitation of our study may be the relatively small number
of animals enrolled per group and the finite number of time points
selected for analysis. However, taken together, the overall limited tis-
sue distribution of YF-S0 as well as the low abundance of its RNA in
blood, below detection limits for infectious virus, suggest a further
lowered risk for YEL-AVD/AND for YF-S0 than that reported
parental YF17D. It is thus to be decided to what extent such highly
ar Therapy: Methods & Clinical Development Vol. 25 June 2022 219
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Figure 3. Assessment of YF-S0 transmission potential by Aedes mosquitoes

(A) Schematic of virus feeding of mosquitoes and specimen collection. Mosquitoes were fed with infectious blood meal containing YF17D, YF-S0, YF-Asibi, or mock.

Five mosquitoes were collected each for ingestion assessment. At 14 days post-feeding (dpf), remaining mosquitoes were dissected into two parts, midgut (infection

assessment) and head, legs, and wings (dissemination assessment). (B) Viral RNA load by RT-qPCR. (C) Virus isolation by TCID50 assay. For assessment of ingestion

and infection, RT-qPCR and TCID50 were performed on all samples. For assessment of dissemination, only a selection of PCR-positive specimens from the YF17D and

YF-Asibi groups (n = 6 each) were further analyzed using TCID50 assay, plus 6 randomly chosen from the YF-S0 group. (D and E) Heatmap representing positivity rates

per experiment group as scored by RT-qPCR (D) and TCID50 assay (E). Bars in (B) and (C) represent median values. N/A, not applicable. Mosquito icons were adapted

from BioRender.com.
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attenuated recombinant YF17D-vectored vaccines need to fulfill all
World Health Organization (WHO) requirements for original yellow
fever vaccine,48 including monkey neurovirulence test as previously
endorsed.19
220 Molecular Therapy: Methods & Clinical Development Vol. 25 June 2
To further investigate the potential environment risk associated with
shedding of recombinant virus, we collected urine, feces, and buccal
swabs from vaccinated hamsters and checked for the presence of viral
RNA for 29 days to determine how long YF-S0 would remain
022
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detectable in body secretions compared with YF17D. No significant
differences in vaccine RNA shedding were observed between
YF17D and YF-S0 during the course of immunization (Figures 2G–
2I, AUC). Importantly, no infectious virus could be isolated, suggest-
ing the risk is very low, even if any inadvertent exposure by vaccinated
individuals to their environment. In summary, these results obtained
in a hamster model of YF vaccination clearly demonstrate that (1) the
overall viral tissue burden for YF-S0 was considerably lower than for
parental YF17D, and (2) presence of viral RNA in body secretions
(urine, feces, and buccal swab) was equally low as for YF17D, mostly
likely void of residual infectious virus particles. YF-S0 vaccine virus
infection is transient and harbors minimal, if at all any, risk for
shedding or evidence for environmental biosafety concern.

Last, though the chances of YF17D-vectored vaccines to be trans-
mitted by arthropod vectors are minimal, we evaluated the replication
competence of YF-S0 in yellow fever mosquito vector (i.e., Ae.
aegypti). Although parental YF17D passed theMIB and was restricted
at the MEB as previous documented,22,23 YF-S0 was already blocked
at the first barrier, with no remaining viral RNA or infectious virus
detectable after an infectious bloodmeal. Hence, the transmissibility
of YF-S0 by mosquitoes is to be considered neglectable.

Altogether, YF-S0 can be considered a safe and efficacious vaccine
candidate for the prevention of COVID-19. A similar improved safety
compared with parental YF17D can be expected for other vaccines
following the same design principle (i.e., using transgenic, yet fully
replication-competent YF17D as a vector).16,40

MATERIALS AND METHODS
Animal experiment

Hamsters

Wild-type outbred specific pathogen-free Syrian hamsters (Mesocricetus
auratus) were purchased from Janvier Laboratories (France). The
generation49 and characterization25 of STAT2�/� (gene identifier:
101830537) hamsters has been described elsewhere. STAT2�/� ham-
sters were bred in-house. Hamsters (maximum n = 2) were housed in
individually ventilated cages (Sealsafe Plus, Tecniplast; cage type
GR900), under standard conditions of 21�C, 55% humidity, and 12
:12 h light/dark cycles. Hamsters were provided food and water ad libi-
tum, as well as extra bedding material and wooden gnawing blocks for
enrichment as previously described. This project was approved by the
KU Leuven ethics committee (P015-2020), following institutional
guidelines approved by the Federation of European Laboratory Animal
Science Associations (FELASA). Hamsters were euthanized by intraper-
itoneal administration of 500 mL (hamsters) Dolethal (200 mg/mL
sodium pentobarbital; Vétoquinol SA).

Vaccine and virus stocks

Vaccine viruses used throughout this study have been described.17

YF-S0 was derived from a cDNA clone of YF17D (GenBank:
X03700) with an in-frame insertion of a non-cleavable version of
the SARS-CoV-2 S protein (GenBank: MN908947.3) in the YFV
E/NS1 intergenic region. YF-S0 vaccine stocks were grown on baby
Molecul
hamster kidney (BHK21) cells. The molecular and antigenic structure
and replication of YF-S0 have been described in detail.17 Original
YF17D vaccine (Stamaril, Sanofi-Pasteur; lot number G5400) was
purchased via the pharmacy of the University Hospital Leuven and
passaged twice in Vero E6 cells prior to use.

For the construction of YF-Asibi, the cDNA of YF17D sequence in
plasmid pShuttle/YF17D50 was adjusted to match previously
described molecular YF-Asibi clone Ap7M (GenBank: MF926243)
by using standard recombinant DNA technology. The respective
cDNA was custom synthesized (IDT, Belgium) as six partially over-
lapping fragments (averaging 2 kb in size) and assembled by homol-
ogous recombination in yeast, S. cerevisiae. The thus obtained
plasmid pShuttle/Ap7M was transfected into BHK-21J cells for virus
rescue. The virus stock was prepared by passaging twice in BHK-21J
cells, and the genome of YF-Asibi virus was confirmed by direct
sequencing. All virus titers were determined by plaque assay on
BHK-21J cells as before.17

Biodistribution

WT hamsters (6–8 weeks old, female) were inoculated intraperitone-
ally with a 104 PFU/mL dose of YF17D (n = 6) or YF-S0 (n = 6).
STAT2�/� hamsters (6–8 weeks old, female) were inoculated intra-
peritoneally with 104 PFU/mL of YF17D (n = 2). At 7 dpi, blood,
spleen, liver, brain, kidney, ileum, parotid gland, and lung were
collected.

Shedding

WT hamsters (6–8 weeks old, female) were inoculated intraperitone-
ally with 104 PFU/mL of YF17D (n = 6) or YF-S0 (n = 6). STAT2�/�

hamsters (6–8 weeks old, male) were inoculated intraperitoneally
with 104 PFU/mL of YF17D (n = 3). Blood, urine, faces, and buccal
swab were collected daily for the first 5 dpi, then every other day until
11 dpi and 15, 22 (except for the blood) and 29 dpi, and afterward
once a week until 29 dpi.

Mosquito experiment

Mosquito strain

Ae. aegypti Paea51 were obtained via the Infravec2 consortium
(https://infravec2.eu/product/live-eggs-or-adult-females-of-aedes-
aegypti-strain-paea-2/) from Institute Pasteur of Paris. Mosquitoes
were maintained at the insectary of Rega Institute, and the fourth
generation was used for this study. In brief, larvae were fed with
yeast tablets (Gayelord Hauser, France) until the pupae stage prior
to transfer to cages for emergence. Adults were maintained with
cotton soaked in 10% sucrose solution under standard conditions
(28�C, 80% relative humidity, and 14 h:10 h light/dark cycle).

Oral infection and sample collection

Seven-day-old female mosquitoes were starved 24 h prior to infec-
tion. Infectious blood meals contained rabbit erythrocytes plus
5 mM adenosine triphosphate as phagostimulant, supplemented
with virus stocks to final titers of 2 � 105 PFU/mL for both
YF17D and YF-S0, and 5 � 106 PFU/mL for YF-Asibi, respectively.
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After 45 min, five fully engorged females from each group were
frozen for viral input assessment (ingestion check; Figure 3A), and
the rest were kept with 10% of sugar solution under both controlled
conditions (28 ± 1�C, relative humidity 80%, light/dark cycle 14 h:10
h, supplied with 10% sucrose solution) and BSL-3 containment con-
ditions. At 14 dpi, mosquitoes were dissected into two parts; main
body (thorax and abdomen) and remainder, collected individually
in tubes containing PBS and 2.8 mm ceramic beads (Precellys).
The samples were homogenized and pass through 0.8 mm column
filters (Sartorius, Germany). Thus, cleared supernatants were used
for TCID50 assay or kept at �80�C for RNA extraction and subse-
quent RT-qPCR analysis.

RNA extraction

Solid tissues (organs), feces, and buccal swabs were homogenized in
a bead mill (Precellys) in lysis buffer (catalog no. 740984.10;
Macherey-Nagel). After homogenization, samples were centrifuged
at 10,000 rpm for 5 min to remove cell debris, and total RNA was
extracted by using NucleoSpin Plus RNA virus Kit (catalog no.
740984.10; Macherey-Nagel). For serum (50 mL), urine (50 mL) and
homogenates of mosquito samples (150 mL), NucleoSpin RNA virus
kit (catalog no. 740956.250; Macherey-Nagel) was used for RNA
extraction.

RT-qPCR

RT-qPCR for YFV detection was performed as previously
described17 using primers and probe targeting the YFV NS3
gene23 on an ABI 7500 Fast Real-Time PCR System (Applied
Biosystems). Absolute quantification was based on standard curves
generated from 5-fold serial dilutions of YF17D cDNA with a
known concentration.

TCID50 assay

For virus isolation and quantification BHK21 cells were infected with
10-fold serial dilutions in 96-well plates and incubated at 37�C for
6 days using DMEM with 2% fetal bovine serum (Hyclone), 2 mM
L-glutamine (Gibco), 1% sodium bicarbonate (Gibco), and 1% antibi-
otics (PenStrep) as assay medium. Solid tissues were homogenized in
a beadmill (Precellys) in assaymedium and centrifuged at 10,000 rpm
for 5 min (4�C) to remove debris. Resulting viral titers were calculated
using the Reed and Muench method.

Serum neutralization test

Titers of YFV-specific neutralizing antibodies were determined using
BHK21 cells and a mCherry-tagged variant of YF17D virus (YFV-
mCherry) as described.17 In brief, YFV-mCherry was mixed and
incubated with serial diluted of sera for 1 h at 37�C and subsequently
transferred to BHK21 cells grown in 96-well plates for infection. At
3 days post-infection, the relative infection rate was quantified by
counting mCherry-expressing cells versus total cells on a high-con-
tent screening platform (CX5, Thermo Fisher Scientific), normalizing
the infection rate of untreated virus controls as 100%. Half-maximal
serum neutralizing titers (SNT50) were determined by curve fitting in
GraphPad Prism 8.
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Statistics

Data were analyzed using GraphPad Prism 8. Results are represented
as individual values and median for summary statistics. Statistical sig-
nificance was determined using non-parametric Mann-Whitney
U test (*p % 0.05 and **p % 0.01; ns, not significant).
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