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The epidemic volatility index, 
a novel early warning tool 
for identifying new waves 
in an epidemic
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Early warning tools are crucial for the timely application of intervention strategies and the mitigation 
of the adverse health, social and economic effects associated with outbreaks of epidemic potential 
such as COVID‑19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually 
simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly 
reported cases per unit of time, ideally per day, and issues an early warning when the volatility change 
rate exceeds a threshold. Data on the daily confirmed cases of COVID‑19 are used to demonstrate 
the use of EVI. Results from the COVID‑19 epidemic in Italy and New York State are presented here, 
based on the number of confirmed cases of COVID‑19, from January 22, 2020, until April 13, 2021. 
Live daily updated predictions for all world countries and each of the United States of America are 
publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 
0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 
(0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main 
epidemic waves in any country or state. EVI’s application to data from the current COVID‑19 pandemic 
revealed a consistent and stable performance in terms of detecting new waves. The application of 
EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning 
systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks.

Early warning tools are crucial for the timely application of intervention strategies and the mitigation of adverse 
health, social and economic effects associated with epidemics. Sentinel networks in combination with informa-
tion technology infrastructures in public  health1 provide data for the detection of spatial and temporal aberra-
tions in the expected number of cases for groups of clinical signs and  symptoms2. Several modelling frameworks 
exist for the analysis of such data. For example, the moving epidemic method is used to monitor, among others, 
the start of flu  epidemics3. Further, methods based on seasonality patterns, the link between pathogens and mete-
orological  parameters4 and/or the measurement of vector indices for vector-borne  pathogens5 are also available.
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Once an epidemic erupts, growth models can be used to predict the course of the outbreak and quantify 
its consequences. The advantages and limitations of these methods have been extensively  discussed6. Machine 
learning algorithms have also been utilized with the most recent application being in the current COVID-19 
 pandemic7. Correlating the number of COVID-19 cases with parameters obtained using “big data” approaches 
can predict future rises in case numbers. For example, monitoring of digital data streams can provide an early 
indication of a rise in the COVID-19 cases and deaths within the subsequent two to three  weeks8. All models have 
limitations arising from the imperfect nature of available data. The need for open, better, detailed data is impera-
tive for the deployment of models with improved accuracy, better predictive ability, and therefore enhanced utility 
for the timely application of appropriate control measures for the COVID-19  pandemic9.

Our work introduces the Epidemic Volatility Index (EVI), which is inspired by the use of volatility indices 
in the stock  market10,11. EVI is based on the moving standard deviation of the newly reported cases during an 
epidemic. First we present the rationale of EVI and then provide an example application with COVID-19 data 
from Italy and New York. Daily updated predictions—with a 48-h lag for confirmation purposes—are available 
online (http:// 83. 212. 174. 99: 3838) for all world countries and each of the United States of America. Results 
revealed a firm and consistent ability of EVI to predict the main COVID-19 epidemic waves, in all instances.

Materials and methods
The epidemic volatility index. EVI is based on the calculation of the rolling standard deviation for a time 
series of epidemic data (i.e. the number of new cases per day). The number of consecutive observations used for 
this calculation is the rolling window size-m. At each time step, for a rolling window of size m, the observations 
within the window are obtained by shifting the window forward, over the time series data, one observation at a 
time (Fig. 1).

For each rolling window the standard deviation of the newly reported cases is then calculated, allowing EVI 
to be estimated as the relative change of the standard deviation between two consecutive rolling windows. A 
warning signal is issued if (i) this relative change exceeds a threshold c(c ∈ [0, 1]) and (ii) the observed cases at 
the current time point are higher than the average of the reported cases in the previous week.

Criterion and desired accuracy. The accuracy of EVI is measured by its sensitivity (Se) (i.e., the probabil-
ity of correctly issuing an early warning for an upcoming epidemic wave) and its specificity 

(

Sp
)

 (i.e., the prob-
ability of not signaling an alarm in the absence of upcoming waves) and depends on the criterion used to define 
what constitutes a noteworthy rise in the expected number of cases that is indicative of an upcoming epidemic 
wave. For example, a criterion can be, as in the example application that follows, a rise in the mean number of 
cases between two consecutive weeks higher than 20%.

For a specified criterion, the accuracy of EVI depends on the window size m and the threshold c, which should 
be selected in a way that achieves a desired accuracy target. One option is the selection of m and c values that 
lead to the best Se and Sp combination for EVI, through the maximization of the Youden index 

(

J = Se + Sp− 1
)

12 and, hence, the overall minimization of false results (i.e., the total number of false positive and false nega-
tive early warnings). Another approach could be to select m and c such that the highest Se

(

or Sp
)

 is achieved 
with Sp(or Se) = 1 or not dropping below a critical value (e.g. 0.95). Advanced Receiver Operating Characteristic 
curve analysis can also be  performed13 and selection of critical values can be based on indices that quantify the 
relative cost of false positive (i.e., falsely predicting an upcoming epidemic wave) to false negative (i.e., failing to 
predict an upcoming epidemic wave) warnings, like the misclassification cost term.

Selection of optimal m and c and generation of an early warning. For a specified criterion and a 
desired accuracy target the optimal m and c are selected through an iterative process. Briefly, every time a new 
time point t  is observed:

1. Cases up to t  are analyzed for all possible window sizes (m) and thresholds (c).
2. For each of the m and c combinations, the Setm,c and Sptm,c are estimated for the specified criterion.
3. The m′ and c′ that give the best Setm′ ,c′

 and Sptm′ ,c′
 combination are selected (i.e., overall minimization of false 

results).

Figure 1.  A time series 
(

y1, y2, . . . , yT
)

 of epidemic data with an example rolling window of size m = 4 . Rolling 
window for EVI is not fixed and is selected at each time point to achieve optimal performance.

http://83.212.174.99:3838
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4. Based on m′ and c′ , EVI is calculated at the new time point t  and a decision is made on whether a warning 
signal is issued or not.

The graphical representation of the entire process is given in Fig. 2, while the statistical details are described 
in the “Appendix”.

Overall accuracy and predictive values. It is possible, at each time point t, to calculate the positive and 
negative predictive values, defined as the probability of observing a rise or drop in the future number of cases, 
given that an early warning was issued or not, respectively. Finally, once the entire time series data has been 
observed the overall SeEVI and SpEVI can be estimated.

Sensitivity analysis. For each epidemic, the accuracy of EVI depends on the specified criterion. Ideally, 
different criterion values should be explored to identify which are suitable for the optimal monitoring of the 
epidemic. In the following example, sensitivity analysis based on an alternative criterion was performed.

Example application. The current most serious threat to global health and  economy14 is the COVID-19 
pandemic that was first reported to the WHO China Country Office on December 31,  201915. Data on the con-
firmed cases of COVID-19 were retrieved from the COVID-19 Data Repository, which is maintained by the 
Center for Systems Science and Engineering (CSSE) at Johns Hopkins  University16. The number of daily con-
firmed new cases of COVID-19, for each country, from January 22, 2020, until April 13, 2021, were analyzed. Due 
to unnatural variability in the reported cases between working days and weekends, a 7-day moving average 
rather than the actual observed cases were analyzed. For the analysis, mmax was restricted to 30 days in order to 
avoid the effect of potentially higher volatility from previous epidemic waves on the volatility estimates of the 
most recent data and the predictive ability of EVI for upcoming and perhaps milder epidemic waves.

Figure 2.  Graphical representation of the Epidemic Volatility Index (EVI) model. T denotes the end of the time 
series, t  a time point of the time-series. Se and Sp stand for the sensitivity and specificity of the testing procedure 
calculated at each step of the algorithm. Solid lines are explanatory; at each time point dashed lines represent the 
iterative optimization process while the bold solid line denotes the end of the algorithm.
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The criterion used was an increase in the mean of expected cases, between two consecutive weeks, equal or 
higher than twenty percent. For sensitivity analysis, the detection of an increase in the mean of expected cases 
equal or higher than 50 percent was considered. Data were analyzed separately for each country and for each 
of the states of the United States of America that had experienced a total number of cases higher than 20.000, 
until April 13, 2021.

Statistical software. All models were run in  R17. The packages  readxl18,  ggplot219,  cowplot18,20 and  readr21 
were used. EVI is also available as a Stata module (type “scc install evi” in the command line)22 and as an R-pack-
age (https:// github. com/ ku- awdc/ EVI).

Results. Results for Italy, one of the most severely affected EU  countries23, and New York, which was in the 
epicenter of the pandemic in the United  States24, are presented in the main manuscript. Daily updated results for 
all world countries and each of the United States are available online at http:// 83. 212. 174. 99: 3838.

Confirmed COVID-19 cases for Italy and New York State, from January 22, 2020, until April 13, 2021, are in 
Figs. 3 and 4, respectively. Red dots correspond to time points when an early warning was issued and indicate that, 
according to the defined criterion, an increase in the mean of expected cases equal or higher to twenty percent is 
expected in the coming week. Grey dots correspond to time points without an early warning indication. Further, 
positive and negative predictive values at each time point are in Figs. 5 and 6, respectively.

For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 
0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91).

Sensitivity analysis results for Italy are in Fig. 7. Under the alternative criterion aiming to detect an increase 
in the mean of expected cases equal or higher than 50%, the overall sensitivity and specificity were 0.75 (0.66; 
0.85) and 0.93 (0.91; 0.96), respectively.

A consistent finding in the results from all countries was that consecutive early warnings are linked to the start 
of a new epidemic wave, while the absence of warnings indicates a stable course or a future drop in the number 
of new COVID-19 cases (Fig. 3, 4 and http:// 83. 212. 174. 99: 3838/).

Discussion
EVI is a useful and easy to implement early-warning tool for an upcoming rise in the number of new cases. 
Results revealed a reliable ability of EVI to predict the COVID-19 epidemic waves, in all instances, as expressed 
by its overall Se and Sp . A more important aspect lies in the fact that repetitive issuance of early warnings indi-
cates the beginning of an epidemic wave. This is a consistent and stable finding across all countries and each of 
the United States (Figs. 3, 4 and http:// 83. 212. 174. 99: 3838/). In a similar manner, the absence of a series of early 
warnings implies that the number of new cases will remain stable or drop. The latter was also a consistent finding. 

Figure 3.  Daily confirmed cases of COVID-19 in Italy, from January 22, 2020, until April 13, 2021. Analysis is 
based on the criterion aiming to detect an increase in the mean of expected cases equal or higher than 20%. Red 
dots correspond to dates that, according to the Epidemic Volatility Index (EVI), an early warning was issued 
indicating that a rise in the COVID-19 cases is expected. Data are presented on the original scale (1a) and the 
logarithmic scale (1b), which facilitates the comparison of the steepness of the epidemic curve between the 
different waves.

https://github.com/ku-awdc/EVI
http://83.212.174.99:3838
http://83.212.174.99:3838/
http://83.212.174.99:3838/
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Additionally, false early warnings (i.e. false positives) were isolated instances and did not occur in a consecutive 
series. There were few occasions with a consecutive absence of early warnings despite a continuing rise in the 
number of cases (i.e. false negatives). Nevertheless, such series of false negatives were always close to the peak 
of a wave. This finding is reasonable and could be interpreted as an early sign of reaching the peak because EVI 
depends on the volatility and the increase in the number of new cases decelerates when approaching the peak of 
an epidemic wave. Positive and negative predictive values, which are calculated at each time point, can also be 

Figure 4.  Daily confirmed cases of COVID-19 in New York, from January 22, 2020, until April 13, 2021. 
Analysis is based on the criterion aiming to detect an increase in the mean of expected cases equal or higher 
than 20%. Red dots correspond to dates that, according to EVI, an early warning was issued indicating that a rise 
in the COVID-19 cases is expected. Data are presented on the original scale (1a) and the logarithmic scale (1b), 
which facilitates the comparison of the steepness of the epidemic curve between the different waves.

Figure 5.  Positive and negative predictive values (PPV in 3a and NPV in 3b), for Italy, depending on whether 
or not an early warning was issued. Higher color intensity corresponds to predictive values closer to the value of 
1.
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used to assess the probability that an early warning, or its absence, is true. In all instances, predictive values were 
high with the exception of few instances at the beginning of the time series where there were insufficient data.

Previous work on compartmental SIR and SIS models has revealed that moving window estimates of the vari-
ance increase while approaching the emergence of a pathogen as well as during the elimination phase and that it 
can be used as an early warning  tool25. EVI is based on the relative rather than the absolute change of the standard 
deviation because the latter depends on the underlying prevalence at each time point of the epidemic. Hence, a 

Figure 6.  Positive and negative predictive values (PPV in 4a and NPV in 4b), for the state of New York, 
depending on whether or not an early warning was issued. Higher color intensity corresponds to predictive 
values closer to the value of 1.

Figure 7.  Daily confirmed cases of COVID-19 in Italy, from January 22, 2020, until April 13, 2021. Analysis is 
based on the criterion aiming to detect an increase in the mean of expected cases equal or higher than 50%. Red 
dots correspond to dates that, based on EVI, an early warning was issued indicating that a rise in the COVID-19 
cases is expected. Data are presented on the original scale (1a) and the logarithmic scale (1b) which facilitates 
the comparison of the steepness of the epidemic curve between the different waves.
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low threshold would be efficient in detecting a surge in the new cases at the beginning of an epidemic, when the 
baseline prevalence is low, but would have failed to do so for subsequent epidemic waves that commence from 
a higher baseline prevalence. On the other hand, a high absolute threshold would have failed to capture waves 
at the beginning of the epidemic. EVI is based on the relative increase in volatility, which implicitly adjusts for 
the baseline prevalence at each point of the time series.

In general, the ability of EVI to provide valid predictions does not seem to be affected by the fact that sampling 
and testing schemes for COVID-19 are mainly based on passive surveillance systems. EVI performed equally 
well among different countries with different control strategies, testing intensity and reporting accuracy and 
despite the fact that, even within countries, sampling and testing has changed over time and/or differs between 
 regions26,27. Restriction of the maximum window size (mmax) to one month plays a key role, because reporting 
bias is expected to remain similar over short time periods. This form of non-differential misclassification leads 
to reporting rates that, though biased, do not have a significant impact on volatility, EVI and its predictive ability. 
Crucially, it is important that the data do not exhibit strong artifacts of recording bias, as there is no way for the 
method to distinguish between a trend due to underlying epidemic patterns and an observed trend due to changes 
in reporting practices or an increased testing capacity or  effort28. This could for instance happen when a country 
changes its general testing regime, experiences local outbreaks, and focuses testing on a specific area or targets 
other subgroups of the population than previously. Thus, EVI should preferably be evaluated for use in smaller 
geographical regions, such as counties or municipalities, if sufficient, high-quality data is available. Undoubtedly, 
all models are prone to limitations due to imperfect  data9 but the continuing enhancement of active and passive 
surveillance systems—as the testing regimes and methods also improve—will lead to improved data quality.

The performance of EVI depends on the specified criterion which should be epidemic-specific and can be 
country-specific. Modifications to allow for an alternative criterion, for the different periods of an epidemic, are 
rather straightforward to implement. Parameters c and m are allowed to vary and take values that would satisfy 
the conditions set by the defined criterion and the desired accuracy. A point of concern is the selection of the 
maximum window size mmax . For an ongoing epidemic with multiple waves, as is the case with COVID-19, mmax 
should be limited to a period shorter than the entire observation period. This prevents excess volatility of past 
epidemic waves from affecting the most recent volatility estimates and the ability of EVI to warn for upcoming 
waves that may be smaller and of lower volatility than previous ones. In our example, we limited mmax to one 
month. EVI also depends on data intensity. Detailed data at the lowest time unit (i.e., days rather than weeks) 
is preferable in order to detect changes rapidly. In the COVID-19 example the 7-day moving average was ana-
lyzed instead of the daily reported cases because daily data had unnatural variability due to reporting variations 
between working days and weekends. Nevertheless, analysis based on the daily reported cases provided similar 
results (data not shown here).

Beyond the case of epidemics or exceptional events, like the COVID-19 pandemic, an important application 
of EVI could be in the context of syndromic  surveillance29, not limited to outbreaks from biologic terrorism, 
but in its broader sense: the detection of temporal and spatial aberrations in the expected number of cases for 
signs and symptoms. Such systems already exist and utilize state-of-the-art information technologies within the 
context of public  health1 as well as one  health30,31. EVI could provide an additional early warning tool in support 
of these systems.

Data availability
Daily updated results/predictions are available at http:// 83. 212. 174. 99: 3838.

Appendix
The epidemic volatility index. EVI is calculated for a rolling window of time series epidemic data (i.e. 
the number of new cases per day). At each step, the observations within the window are obtained by shifting the 
window forward over the time series data one observation at a time.

Let xi = {x1, x2, . . . , xn} be a time series of length N . The rolling window size—that is the number of consecu-
tive observations per rolling window − is m . With 0 < m ≤ mmax and 0 < mmax ≤ N , there are  t = N −m+ 1 
consecutive rolling windows.

At each of the t  steps, EVI uses the standard deviation (st) of the newly reported cases 
(

yjt =
{

y1t , y2t , . . . , ymt

})

 
within the specified m

with xt  the mean of the tth window. Subsequently, EVI is calculated as the relative change of (st) between two 
consecutive rolling windows:

We expect an increase in the future number of cases, if EVIt−1,t exceeds a threshold c (c ∈ [0, 1]) and the 
observed cases at time point t,

(

yt
)

 are higher than the average of the reported cases in the previous week:

st =

√

√

√

√

1

m

m
∑

it=1

(

xit − xt
)2

EVIt−1,t =
st − st−1

st−1

IndEVIt−1,t =

{

1 if EVIt−1,t ≥ c ∧ yt ≥ µt:t−7

0 otherwise

http://83.212.174.99:3838
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Criterion and desired accuracy. The user should provide the minimum rise in cases that, if present, 
should be detected. A criterion can be the rise in the mean number of cases between two consecutive weeks that 
exceeds a threshold:

with 0 ≤ r ≤ 1.
The accuracy of EVI, given the specified criterion, depends on m and c , which should be selected in a way to 

achieve a desired accuracy target. Several strategies are available. One option is the selection of m and c values that 
lead to the best Se and Sp combination for EVI, through the maximization of the Youden index 

(

J = Se + Sp− 1
)

12 and, hence, the overall minimization of false results (i.e., the total number of false positive and false nega-
tive early warnings). Another approach could be to select m and c . such that the highest Se

(

or Sp
)

 is achieved 
with Sp(or Se) = 1 or not dropping below a critical value (e.g. 0.95). Advanced Receiver Operating Characteristic 
curve analysis can also be  performed13 and selection of critical values can be based on indices that quantify the 
relative cost of false positive (i.e., falsely predicting an upcoming epidemic wave) to false negative (i.e., failing to 
predict an upcoming epidemic wave) warnings, like the misclassification cost term (MCT).

Generation of an early warning. Every time a new time point  t  is observed, the model uses all the 
observed cases up to t  to decide whether it should issue an early warning, at time point t  . The steps are:

1. Observed cases up to t  are analyzed for all possible values of the window size (m ∈ [1,mmax]) and thresh-
old (c ∈ [0, 1]).

2. For each of the m and c combinations, the Setm,c and Sptm,c are estimated for the predefined criterion (Eq. 4).
3. The m′ and c′ that give the best Setm′ ,c′

 and Sptm′ ,c′
 combination are selected.

4. For m′ and c′ , the value of IndEVIt,t−1
 is determined at the most recent time point t and a decision is made on 

whether or not a warning signal is issued.

Accuracy and predictive values. Further, at each time point t  , the probability of observing a rise or drop 
in the future cases, given that an early warning was issued or not, can be calculated as the positive (PVt+) and 
negative (PVt−) predictive value, respectively:

where p1:t is the proportion of events satisfying the condition of Eq. 4 up to time point t .
Once the entire time series data have been observed, the overall SeEVI can be estimated as the fraction of 

the total number of occurrences for which an early warning has been issued, given that the criterion (Eq. 4 ) 
holds (P(T + |D+)) , divided by the total number of occurrences that the criterion holds (P(D+)) . Similarly, 
the overall SpEVI is calculated as the fraction of the total number of occurrences for which an early warning was 
not issued given that the expected rise of cases was not observed, that is, the criterion is not true, (P(T − |D−)) 
divided by the total number of occurrences that the criterion is not true (P(D−)):

Sensitivity analysis. The performance of EVI depends on the specified criterion (i.e., r ) and the desired 
accuracy. Ideally, in the presence of historical data, various criterion values ( r values) should be explored to iden-
tify combinations that provide the optimal monitoring of an epidemic.
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