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Abstract

Background

The Ebola outbreak in West Africa has infected at least 27,443 individuals and killed

11,207, based on data until 24 June, 2015, released by the World Health Organization

(WHO). This outbreak has been characterised by extensive geographic spread across the

affected countries Guinea, Liberia and Sierra Leone, and by localized hotspots within these

countries. The rapid recognition and quantitative assessment of localised areas of higher

transmission can inform the optimal deployment of public health resources.

Methods

A variety of mathematical models have been used to estimate the evolution of this epidemic,

and some have pointed out the importance of the spatial heterogeneity apparent from incidence

maps. However, little is known about the district-level transmission. Given that many response

decisions are taken at sub-national level, the current study aimed to investigate the spatial het-

erogeneity by using a different modelling framework, built on publicly available data at district

level. Furthermore, we assessed whether this model could quantify the effect of intervention

measures and provide predictions at a local level to guide public health action. We used a two-

stagemodelling approach: a) a flexible spatiotemporal growthmodel across all affected districts

and b) a deterministic SEIR compartmental model per district whenever deemed appropriate.

Findings

Our estimates show substantial differences in the evolution of the outbreak in the various

regions of Guinea, Liberia and Sierra Leone, illustrating the importance of monitoring the

PLOSONE | DOI:10.1371/journal.pone.0147172 January 15, 2016 1 / 11

OPEN ACCESS

Citation: Santermans E, Robesyn E, Ganyani T,
Sudre B, Faes C, Quinten C, et al. (2016)
Spatiotemporal Evolution of Ebola Virus Disease at
Sub-National Level during the 2014 West Africa
Epidemic: Model Scrutiny and Data Meagreness.
PLoS ONE 11(1): e0147172. doi:10.1371/journal.
pone.0147172

Editor: Luzia Helena Carvalho, Centro de Pesquisa
Rene Rachou/Fundação Oswaldo Cruz (Fiocruz-
Minas), BRAZIL

Received: August 25, 2015

Accepted: December 30, 2015

Published: January 15, 2016

Copyright: © 2016 Santermans et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All compiled data and
code are available from a Github repository (DOI 10.
5281/zenodo.33126).

Funding: ES acknowledges support from a
Methusalem research grant from the Flemish
government awarded to Herman Goossens
(Antwerpen University) en Geert Molenberghs
(Hasselt University). NH acknowledges support from
the Antwerp University scientific chair in Evidence-
Based Vaccinology, financed in 2009–2015 by an

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0147172&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5281/zenodo.33126
http://dx.doi.org/10.5281/zenodo.33126


outbreak at district level. We also provide an estimate of the time-dependent district-specific

effective reproduction number, as a quantitative measure to compare transmission between

different districts and give input for informed decisions on control measures and resource

allocation. Prediction and assessing the impact of control measures proved to be difficult

without more accurate data. In conclusion, this study provides us a useful tool at district

level for public health, and illustrates the importance of collecting and sharing data.

Introduction
The Ebola epidemic in West Africa was detected in March, 2014. On 8 August, 2014, WHO
declared the event a Public Health Emergency of International Concern [1] and the UN Gen-
eral Assembly declared the epidemic a threat to global health and security [2]. On 9 May, 2015,
Liberia was declared free of Ebola virus transmission but on 30 June, 2015, a new case was
detected from an unknown chain of transmission [3,4]. In Guinea and Sierra Leone, the epi-
demic persists in a number of districts mainly between Conakry and Freetown [5]. As of 24
June, 2015, it has caused 27,443 probable, confirmed, and suspected cases of EVD in Guinea,
Liberia and Sierra Leone, including 11,207 deaths [6].

A number of, mainly deterministic, SEIR transmission models (with Susceptible, Exposed,
Infected, Recovered compartments) have been published that aimed to estimate epidemiologi-
cal parameters, and to forecast the evolution of the epidemic [7–10]. Most models, and espe-
cially the ones early in the outbreak, were fitted on reported cumulative national data. Doing
so, they did not account for the transmission heterogeneity of this outbreak and the serial cor-
relation induced by the accumulation of data. However, in the course of the outbreak, others
highlighted the importance of the spatial and temporal heterogeneity of the outbreak, question-
ing assumptions made by early models [11]. A study by King et al. [12] illustrated through sim-
ulations that deterministic models, fitted on cumulative incidence data, lead to substantial
underestimation of the uncertainty in estimates and forecasts. In addition, fitting of the models
was often done not taking into account the serial correlation. The clustered pattern of transmis-
sion could be attributed to variability in transmission settings (e.g. healthcare facilities, house-
holds, burials) [13], behaviour (e.g. expressions of mistrust) and control measures (e.g. contact
tracing and monitoring and establishment of a treatment centre). However, there is still a lack
of insight in the relative contribution of each factor to the transmission pattern [14].

A good understanding of the outbreak transmission may support an efficient allocation of
resources at national and at district level. With our study, we aimed to develop a model that
would overcome previously identified model limitations, including the not-used district level
data and the assumption of homogenous transmission across districts. Our two-stage model is
based on publicly available data that might improve the information for operational decisions
to control the epidemic. The first stage is the use of a growth model that addresses the spatio-
temporal correlation; the second stage is the use of a compartmental model–whenever deemed
appropriate—that provides a district-specific estimation of the effective reproduction number–
a composite dynamic estimate of the evolution of the outbreak—and its uncertainty. In addi-
tion, we performed a sensitivity analysis to study the effect of the model assumptions on the
parameter estimates.
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Methods

Data sources
Data on cases and deaths. We used publicly available district-level data on cumulative

cases and deaths, reported from 30 December 2013 until 8 July 2015 through situational
reports by the Ministries of Health of Guinea [15], Liberia [16] and Sierra Leone [17,18]. The
data were collected and reported to the national authorities by the Ebola treatment units and
diagnostic testing facilities in the three countries, following national guidelines and/or WHO
case definitions [19].

Data were reported every two to three days, and more recently on a daily basis. The data
sources provided no detailed information about the used case definition. Data for Liberia and
Guinea were the reported total cumulative number of (suspected, probably and confirmed)
cases and deaths, while for Sierra Leone, we calculated the sum of the reported suspected, prob-
able and confirmed cases. This allowed us to calculate for each district the new cases and new
deaths between two reporting intervals. The models were fitted to these new cases and new
deaths over the corresponding time intervals and not to the cumulative data. The observed
number of new cases and deaths were depicted by taking these new cases and new deaths and
dividing them by the number of days the time intervals span.

A presentation of how the cases were reported can be found in S4 Fig. The reporting scheme
for deaths was similar, but the dates at which reporting occurred is not necessarily the same.

Data on control measures. Publicly available situation reports of response measures were
used to assess the intensity of interventions [20,21] (https://data.hdx.rwlabs.org/dataset?q=
ebola). The publicly available data regarding interventions provided little detail and was not
regular over time or over the entire outbreak region. Due to the complexity of response mea-
sures and limited availability of data, we used the presence of triage centres, holding or commu-
nity care centres and Ebola Treatment Units (ETUs) as a surrogate marker of response
activities.

Models
Growth model. To compare growth patterns over time among districts, we used a flexible

spatiotemporal growth rate model across all districts. This model allowed the estimation of the
district-specific expected number of new cases per week, the district-specific time trend, the
district-specific growth rate and the spatial distribution of the growth rate within the three
countries. In addition, to investigate the effect of implemented intervention measures on the
estimated growth rates, for each district a Pearson’s Chi-square test was used. Doing so, we
tested, for different time lags, the association between positive and negative growth rates and
the absence or presence of aforementioned intervention measures. We used Integrated Nested
Laplace Approximation [22] as a more flexible estimation method and alternative for the more
computationally intensive Markov chain Monte Carlo (MCMC). We made a growth rate distri-
bution heat map as a method to visualise the weekly change for each district-specific rate of
infection with an overlay of intervention measures.

Compartmental model. Further, district-specific SEIR compartmental models were fitted
to the number of newly reported cases and deaths (see S1 File for more details). We applied
this model to data of several districts to address within-district disease evolution over time. In
this paper we show the obtained results for a selection of rural and urban districts: Forecariah
(Guinea), Conakry (Guinea), Western Area Urban (Sierra Leone), and Grand Cape Mount
(Liberia). This selection was based on events of interest during the course of the outbreak e.g.
sudden increase in cases. We were, however, also restricted by inconsistencies in the data as
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pointed out as a limitation of the model in the discussion. For each of these four districts the
effective reproduction number, Re(t), was estimated over time. The SEIR model incorporates
disease-related mortality by making the distinction between survivors and non-survivors. It
also takes into account an underreporting factor for cases and deaths. Goodness of fit was
assessed visually.

We assessed retrospectively the quality of three-week long predictions made at 4 different
time points, for the selected districts and we compared these predictions with the actual
observed number of cases and deaths.

Assumptions and sensitivity analysis. For the compartmental models, we used prior esti-
mates of the incubation period for EVD (9�4 days), the duration of infectiousness for survivors
(16�4 days) and deceased (7�5 days) [23]. The reproductive number was modelled with a piece-
wise constant interval of 21 days. The remaining parameters are estimated via an MCMC
approach. The MCMC procedure, which we made publicly available, was performed in R 3.1.1
using the Laplaces-Demon package [24,25].

Furthermore, due to reclassification of suspected cases over time, the cumulative data–
expected to increase monotonically over time, decreased at certain time points. It was thus nec-
essary to monotonize the data. The algorithm that was used to do so is described in S1 File.

Lastly, we assessed the sensitivity of our results to the model assumptions by performing a
sensitivity analysis. We investigated the estimability of the fixed parameters mentioned in the
previous paragraph, the effect of the number of exposed individuals at time 0, transmission
through contacts with bodies of dead people, and protective immunity by asymptomatic infec-
tions. We compared the models with Deviance Information Criterion (DIC).

More details about the models and estimation methods, as well as results from the sensitiv-
ity analysis can be found in the S1 File. Our compiled data and code are made available for
reproducibility purpose.

Results
Results of the growth rate model are shown in the heat map in Fig 1. Comparing the growth
rates in the different districts (rows), it was clear that the outbreak did not evolve uniformly
over districts. Pearson’s Chi-square test for decrease in growth rate after implementation of
control measures, for different time lags, did not reveal any insights (results not shown). A
map of the geographical distribution of the estimated growth rates can be found in S3 Fig.

Results of the SEIR models for the four selected districts are presented in Figs 2–4. The
observed and estimated number of new and cumulative cases and deaths are shown in Fig 2.
From this figure, we observe that the model fits both the number of cases and the number of
deaths relatively well. Also at the level of the cumulative numbers model and data show a rea-
sonable fit.

The estimated effective reproduction numbers over time are shown in Fig 3. Re(t) ranges
from below unity to up to 3�5. Furthermore, estimates are below one for all four districts in the
last time period. However, the 95% credible intervals indicate substantial variability.

Results of the short-term predictions are presented in Fig 4 for Western Area Urban. Note
that the credible intervals do not contain all data points. Hence, even within a 3-week forecast
period, the models are not always able to capture all the trends.

The results of the sensitivity analysis (S1 File) show that the fixed parameters in our model
are not estimable from the data. Further, taking into account the transmission from dead bod-
ies does not improve model fit. We do, however, see an improvement when including an
increasing (from 10 to 40%) proportion of asymptomatic cases (S4 Table).
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Discussion
The results of our study strengthen the evidence of a strong temporal and spatial variability of
the EVD transmission at a subnational level in the affected regions of Guinea, Sierra Leone and
Liberia. The variable transmission dynamics are a major challenge for the implementation of
intervention measures and the mobilisation of resources among districts. This complexity
highlights the importance of constant monitoring and the usefulness of quantitative tools,
thereby taking full account of the uncertainty, to inform the response.

Our growth model quantifies spatiotemporal transmission patterns at a sub-national level,
which cannot be derived from visual inspection of incidence curves and maps alone. The

Fig 1. Estimated weekly growth rates per district and implemented intervention measures for Guinea,
Sierra Leone and Liberia, 2014–2015.Red colours indicate an increase in number of weekly cases,
whereas blue colours indicate a decline. Periods for which no reported cases are available are shown in
white. A light dot indicates that a triage, holding centre or CCC is in place and a dark dot indicates that an
ETU or ETU and CCC are in place.

doi:10.1371/journal.pone.0147172.g001
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visualisation of the growth rates with a two dimensional (time and space) heatmap, is useful
for decision makers to make evidence based informed decisions on resource allocation. On the
other hand, our compartmental model allows the calculation of a quantitative measure of
transmission, Re(t), that can be used to compare and communicate about differences in out-
break dynamics between districts and over time.

The combined model illustrates how district-level data can be used to gain a quantitative
insight in the complex outbreak dynamics. Both models show how the trend varies widely
among the districts and changes quickly in time and space (Figs 1 and 3). While our estimates
of Re(t) are within the range of published estimates, most of the published estimates were
derived from country-level data and do not provide the granularity we provide at time-depen-
dent district level. The wide range of Re(t) between near 0 and 3�5 illustrates the need to com-
plement national with district data driven models, to support public health action.

We further show that it is difficult to generate accurate predictions. Forecast results should
be interpreted with caution, as control measures and behavioural changes cannot be suffi-
ciently quantified with the publicly available data. Also, there are still gaps in our basic knowl-
edge about the disease spread that could potentially explain outliers, departing from modelling
approaches. We think here, for example, of the three last reported cases in Liberia; one from

Fig 2. Observed (black) and estimated (blue) number of new cases (top left), new deaths (top right),
cumulative cases (bottom left) and cumulative deaths (bottom right) per district. Dashed lines are 95%
credible intervals.

doi:10.1371/journal.pone.0147172.g002
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suspected sexual transmission months after the source case recovered from disease [26], and
most recently two connected cases without any recognised link to outbreak chains.

One of the limitations of our model is the assumption of constant underreporting. Previous
studies have also assumed a proportion of underreporting [13]. Knowledge about the level and
changes in underreporting over time would improve the estimates of transmission dynamics.
Unfortunately we do not have data to assess the magnitude or the variability of underreporting.
Also, inconsistent reporting with undocumented backlogging and the absence of dates of dis-
ease onset may affect the accuracy of the estimates and need to be taken into consideration
when interpreting the results [27]. Furthermore, the district-specific SEIR model is a mathe-
matical model assuming a deterministic disease process. As a consequence, the second phase of
our approach was deemed inappropriate for some districts, because the data didn’t seem to fol-
low any consistent pattern, presumably due to the aforementioned inconsistencies in detection
and reporting and the sporadic introduction of cases.

EVD can be transmitted through contact with dead bodies; therefore, a model accounting
for this transmission was included in the sensitivity analysis. However, this model did not
improve the fit to the data. Most likely, the extent to which dead bodies versus cases contribute
to transmission is indistinguishable with this model and requires more information and a fully
stochastic modelling approach on disaggregated data, which is not publicly available.

Since there is evidence suggesting the presence of asymptomatic Ebola infections [28], we
looked at the effect of accounting for protective immunity by asymptomatic infection. We
observed that the model fit improved with increasing proportion of asymptomatic cases, sug-
gesting that our data do not reject the hypothetical occurrence of asymptomatic cases. Asymp-
tomatic cases could partially explain why the epidemic did not reach the expected incidence as
predicted by models ignoring them. This again highlights the need for serological studies in
order to clarify the role of asymptomatic infection.

While our sensitivity analysis assesses the influence of unknown parameters, it cannot sub-
stitute for non-public data. The growth rate and compartmental models can be run in real time
using our published code and dataset, and can be improved by organizations that have addi-
tional data available or to explore adaptations to the models and parameters. In the end, differ-
ent modelling approaches bring different insights and will improve our ability to effectively

Fig 3. Estimated reproduction number per district with 95% posterior intervals. The threshold value of
one is indicated by a red horizontal line.

doi:10.1371/journal.pone.0147172.g003
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support public health action. We recommend that minimal datasets and standards for data
processing, including de-identification, and data sharing will be developed for future multi-
country outbreaks, especially Public Health Events of International Concern under the Interna-
tional Health Regulations. The importance of this has also been retained as a conclusion in a
recent research paper on this topic [29].

Our two-stage modelling approach, built with the most detailed publicly available data, pro-
vides time-dependent district-specific quantitative measures of growth and transmission. We
hope that such tool, in addition to other approaches, can complement public health action
against such devastating events as the West-African Ebola epidemic.

Fig 4. Three-week prediction of new cases (left) and deaths (right) for Western Area Urban at 24
October, 14 November, 5 December and 26 December 2014 (top to bottom). Light blue regions are the
predicted time periods and estimation is based on all data before that time point.

doi:10.1371/journal.pone.0147172.g004
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Supporting Information
S1 Fig. Cumulative cases per district and implemented intervention measures. A light dot
indicates that a triage, holding centre or CCC is in place and a dark dot indicates that an ETU
or ETU and CCC are in place.
(JPEG)

S2 Fig. Cumulative deaths per district and implemented intervention measures. A light dot
indicates that a triage, holding centre or CCC is in place and a dark dot indicates that an ETU
or ETU and CCC are in place.
(JPEG)

S3 Fig. Estimated growth rate per district and implemented intervention measures during
week 21 and 40 of 2014 and week 8 and 26 of 2015. ‘1’ triage, holding centre or CCC is in
place; ‘2’ ETU or ETU plus CCC is in place.
(PDF)

S4 Fig. Flow diagram for the SEIR model with distinction between cases that survive and
fatal cases.
(JPG)

S5 Fig. Schematic representation of reporting of case notifications.
(JPG)

S1 File. Supplementary file.
(DOCX)

S1 Table. Prior distributions.
(PDF)

S2 Table. Parameter estimates with 95% posterior confidence intervals. Note that for Cona-
kry a U(0, 100) prior for E(0) was used.
(PDF)

S3 Table. Parameter estimates sensitivity analysis. Fixed values are indicated in bold, blue
values indicate model differences compared to the final model 1.
(PDF)

S4 Table. Parameter estimates sensitivity analysis. Fixed values are indicated in bold, blue
values indicate changes compared to the final model 1.
(PDF)
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