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Abstract

Mannose-binding C-type lectin receptors, expressed on Langerhans cells and subepithelial dendritic cells (DCs) of cervico-
vaginal tissues, play an important role in HIV-1 capture and subsequent dissemination to lymph nodes. DC-SIGN has been
implicated in both productive infection of DCs and the DC-mediated trans infection of CD4+ T cells that occurs in the
absence of replication. However, the molecular events that underlie this efficient transmission have not been fully defined.
In this study, we have examined the effect of the extracellular domains of DC-SIGN and Langerin on the stability of the
interaction of the HIV-1 envelope glycoprotein with CD4 and also on replication in permissive cells. Surface plasmon
resonance analysis showed that DC-SIGN increases the binding affinity of trimeric gp140 envelope glycoproteins to CD4. In
contrast, Langerin had no effect on the stability of the gp140:CD4 complex. In vitro infection experiments to compare DC-
SIGN enhancement of CD4-dependent and CD4-independent strains demonstrated significantly lower enhancement of the
CD4-independent strain. In addition DC-SIGN increased the relative rate of infection of the CD4-dependent strain but had
no effect on the CD4-independent strain. DC-SIGN binding to the HIV envelope protein effectively increases exposure of the
CD4 binding site, which in turn contributes to enhancement of infection.
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Introduction

Dendritic cell (DC) subsets [1–3] as well as Langerhans cells

(LCs) [4–6] in genital mucosal tissue may play a key role in

transmission of human immunodeficiency virus type 1 (HIV-1) to

CD4+ T cells. While CD4+ T cells form the founder populations of

infected cells at the portal of entry [5,7], DCs and LCs contribute

to viral dissemination to lymphoid tissues and enhance amplifica-

tion of viral replication in CD4+ T cells at mucosal sites [8]. DCs

and LCs bind HIV and transfer virus to permissive CD4+ T cells

in a process termed trans infection that does not require HIV

replication in DCs or LCs [4,9]. In addition, immature DCs and

LCs express low levels of cell surface CD4 and CCR5 and are

susceptible to infection with HIV [10–12]. Although replicative

infection in DCs and LCs is much less efficient than in CD4+ T

cells and macrophages [5,13,14], infected DCs and LCs can

efficiently release de novo synthesized virus particles to CD4+ T cells

at the points of cell contact termed virological synapses [5,15–17].

Thus DC-mediated transmission of virus involves two different

mechanisms that can be distinguished temporally [17]. Within

24 hours of exposure to HIV, DCs transmit either surface bound

virus or internalised virus in trans (in the absence of productive

replication) [18]. Beyond this time-point, immature DCs that have

been infected transmit progeny rather than input virus to

permissive target cells that express CD4 and chemokine receptors

[16,17].

Mannose-binding C-type lectin receptors expressed on the

surface of LCs and subepithelial DCs of cervico-vaginal tissues

bind the highly glycosylated HIV envelope protein and capture

HIV [9,11,19], although other unidentified receptors may also

bind HIV [20]. In particular, the C-type lectin DC-SIGN (DC

specific ICAM-3-grabbing nonintegrin) has been identified as a
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cell surface receptor on immature DCs that binds HIV and

mediates transfer of virus to CD4+ permissive T cells

[9,15,18,21,22]. DC-SIGN binding to HIV results in internalisa-

tion of virus to a non-endolysosomal compartment [17,18]. From

this compartment, internalised virus moves rapidly to synapses

formed by infected DCs and CD4+ T cells, however, within

24 hours HIV in this compartment is degraded concomitant with

a decline in transfer of infectious input virus [17].

DC-SIGN binding to HIV may also enhance DC infection

directly and so contribute to the second longer-term mechanism of

DC-mediated infection that involves transfer of progeny virus to

CD4+ T cells [17,23]. Co-expression of DC-SIGN with CD4 and

CCR5 in transfected cell lines or in T cell lines resulted in modest

(two- to five-fold) increases in infection with HIV-1 although the

relative enhancement was increased in cell lines that expressed

lower levels of CCR5 [22,24]. DC-SIGN binding to HIV-1

anchors the virus and may provide an increased local concentra-

tion of virus at the DC surface that facilitates interaction with CD4

and co-receptor [22,24].

Not all mannose-binding C-type lectin receptors enhance

infection either in trans or when expressed in cis with CD4 and

co-receptor. In contrast to DC-SIGN, the LC-specific lectin

Langerin mediates a protective effect since binding of HIV results

in internalisation into Birbeck granules and rapid degradation

[25]. Thus binding of HIV at the cell surface is not sufficient per se

to enhance infection.

In this study, we have investigated the interaction between DC-

SIGN or Langerin with gp140 (soluble, trimeric ectodomain of

HIV envelope glycoprotein) to determine whether factors other

than concentration at the cell surface also contribute to cis

enhancement of infection. Surface plasmon resonance assays

demonstrate that binding of DC-SIGN, but not Langerin, to HIV

gp140 considerably increases the affinity of binding of gp140 to

CD4. Enhancement of infection in vitro of permissive cells that

express DC-SIGN was greater for the CD4-dependent HIV-1 IIIB

strain than for the CD4-independent strain HIV-1 IIIBx [26].

This is consistent with the proposal that DC-SIGN may promote

infection of immature dendritic cells by both concentrating virus at

the cell surface and promoting binding to CD4.

Materials and Methods

Reagents and cells
The human anti-gp41 Mab 5F3 [27] was a kind gift of D.

Katinger (Polymun GmbH, Vienna, Austria). The mouse anti-

DC-SIGN Mab 120507 was from R&D Systems (Abingdon,

Oxon, UK). CHO-expressed soluble CD4, Mab b12 [28] and

Mab 447-52D [29,30] were obtained through the Centralised

Facility for AIDS Reagents (CFAR), National Institute for

Biological Standards and Controls (NIBSC, Potters Bar, Herts,

United Kingdom) and were donated by Progenics Pharmaceuti-

cals, Inc., USA, D. P. Burton and S. Zolla-Pazner, respectively.

The lectin HHA was prepared as described [31]. T-20 (Fuzeon)

was from Roche, Welwyn Garden City, UK. Mannan was

purchased from Sigma-Aldrich (Poole, UK). Recombinant E. coli

DnaJ was provided by E. McGowan (King’s College London,

London, UK).

Cells
PM1 cells (CFAR, NIBSC, donated by Paolo Lusso) [32], THP-

1ATCC and THP-1ATCC/DC-SIGN cells (referred to as THP-1

and THP-1DC-SIGN hereafter) (NIH AIDS Research and

Reference Reagent Program, Division of AIDS, NIAID, NIH,

Germantown, MD, USA, original source L. Wu and V. N.

KewalRamani) [33] were grown in RPMI 1640 medium

supplemented with 10% foetal calf serum, 100 U/ml penicillin,

100 mg/ml streptomycin and 2 mM L-glutamine. 293T/17 cells

(ATCC #CRL-11268, Manassas, VA, USA), used for expression

of recombinant gp140, were maintained in Dulbecco’s Modified

Eagles Medium (DMEM) (Invitrogen, Paisley, UK) supplemented

with 10% foetal calf serum. Cells were grown in an environment

enriched with CO2 (5%) at 37uC and passaged every 2–3 days or

at approximately 80–90% confluence and the number of passages

did not exceed 5. Immature monocyte-derived DCs were

generated as previously described [21].

Virus stocks
HIV-1 clade B strains 92FR_BX08 (BX08) [34,35] and IIIB

[36] were obtained through the CFAR, NIBSC and were donated

by V. Polonis and R. Gallo, respectively. IIIBx, the CD4-

independent variant of IIIB, was derived as previously described

[37]. Viruses were propagated in peripheral blood mononuclear

cells (PBMCs) isolated from buffy coats (National Blood Transfu-

sion Service, London, UK) using a Ficoll-Hypaque density

gradient. Prior to infection PBMCs were activated with phytohe-

magglutinin (PHA; 0.5 mg/ml; Sigma) and IL-2 (20 U/ml; Sigma).

50% tissue culture infective dose (TCID50) values of cell free viral

stocks were determined in PM1 or THP-1 cells as previously

described [38]. Infectivity was estimated by measurement of p24

antigen release in the supernatant by enzyme-linked immunosor-

bent assay (HIV-1 p24 Antigen ELISA Kit, Zeptometrix Corp,

Buffalo, NY, USA) according to the manufacturer’s instructions.

Expression and purification of DC-SIGN
Complementary DNA of immature monocyte-derived dendritic

cells was used as template to generate the DNA fragment encoding

the entire extracellular domain of DC-SIGN (residues 70-404,

GenBank accession number NP_066978) by PCR with primers 59-

GTCTCGAGATGGAACAATCCAGGCAAGACGCGATCT-

39 (sense) and 59- TCGGATCCCTACGCAGGAGGGGGGTT-

TGGGGT-39 (antisense). The amplified sequence, digested with

XhoI and BamHI was inserted in pET15b (Novagen, EMD

Chemicals, Gibbstown, NJ, USA) and cloned in E. coli TOP10

(Invitrogen). Cloned fragments were confirmed by DNA sequenc-

ing (Advanced Biotechnology Centre, Imperial College London,

London, UK) and compared with GenBank (accession number

NM_021155). For expression, E. coli strain BL21/DE3 (Strata-

gene, La Jolla, CA, USA) was transformed with recombinant

plasmid. Protein expression and refolding was performed as

described [39] with minor modifications. Inclusion bodies (from

1 l bacterial culture) were recovered by centrifugation at 10,0006
g for 20 min at 4uC, and solubilized in 8 ml of 100 mM Tris-HCl,

pH 8.0 containing 6 M urea (solubilizing buffer) supplemented

with 0.01% 2-mercaptoethanol, by gentle rotation for 16 h at 4uC.

The mixture was centrifuged at 20,0006 g for 30 min at 4uC and

soluble recombinant protein was isolated by Ni2+ affinity

chromatography. Bound material (recovered by elution with

200 mM imidazole in solubilizing buffer) was dialyzed against

2 l of 100 mM Tris-HCl, pH 8.0, 0.01% 2-mercaptoethanol,

10 mM CaCl2, 4 M urea then successively against the same buffer

with 2 M urea and no urea. Final dialysis was against 100 mM

Tris-HCl, pH 8.0, 10 mM CaCl2. After dialysis, insoluble

precipitate was removed by centrifugation at 100,0006 g for

30 min at 4uC and refolded DC-SIGN present in the soluble

fraction was purified by D-mannose affinity chromatography as

previously described [40]. Fractions were analyzed by SDS-PAGE

and protein concentrations were determined by densitometric

analysis using the GeneSnap software (Syngene, Cambridge, UK).
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The identity of the protein was confirmed by liquid chromatog-

raphy tandem mass spectrometry (LC MS/MS) analysis (MRC

Clinical Sciences Centre, Imperial College London, London, UK).

Expression and purification of Langerin
The sequence encoding the full extracellular domain of

Langerin (residues 56–328, Genbank accession number

CAB62403) was synthesized and cloned (Epoch Biolabs, Missouri

City, TX, USA) in pET15b ( Novagen). E. coli strain BL21/DE3

was transformed for expression. Inclusion bodies were recovered

and protein purification and refolding was carried out as

previously described [41]. The identity of the protein was

confirmed by LC MS/MS analysis (MRC Clinical Sciences

Centre, Imperial College London).

Size exclusion chromatography
Refolded proteins (approximately 50 mg) were resolved by size

exclusion chromatography on two tandemly connected Superdex

200 3.2/30 PC columns with the ÄKTAbasic system (GE

Healthcare, Uppsala, Sweden) in 100 mM Tris-HCl, pH 7.9,

0.15 M NaCl with flow rate of 0.05 ml/min at room temperature.

Absorbance was monitored at 280 nm, and fractions were

analyzed by SDS-PAGE. Molecular mass was estimated by

comparing the elution positions on the chromatogram to those

of marker proteins injected under identical conditions (apoferritin,

400,000; a-amylase, 200,000; alcohol dehydrogenase, 150,000;

transferrin, 80,000; bovine serum albumin, 67,000; ovalbumin,

45,000; b-lactoglobulin dimer, 36,000; carbonic anydrase, 30,000;

myoglobin, 18,000).

Expression and purification of gp140
Gene fragments encoding BX08 gp140 (residues 31–663)

and IIIB gp140 (residues 31–665) were amplified from

pSFVBX08wtgp160 (kind gift of Ralf Wagner, University of

Regensburg, Germany), harbouring the gp160 sequence derived

from BX08, and the molecular clone pBH10 (CFAR, NIBSC),

respectively, modified and inserted into the pEE14/tpa vector

(Lonza Biologics plc, Slough, UK) under control of the human

tissue plasminogen activator signal peptide as previously described

for production of envelope glycoproteins from six primary isolates

of HIV [42,43]. For expression, the recombinant pEE14 plasmids

were transfected into 293T/17 cells using the transfection reagent

Polyethyleminine ‘‘MAX’’ (12.5 mg/ml, PEI MAX, Polysciences

Inc., Warrington, PA, USA) as described [44]. Cells were

incubated at 32uC for 4 h with the DNA-PEI complex, washed

with 100 ml PBS and then incubated in DMEM+0.05% foetal calf

serum at 32uC for a maximum of 72 h after which cell culture

supernatants were harvested for purification.

Recombinant gp140 was purified by GNA affinity chromatog-

raphy as described followed by size-exclusion chromatography on

a Superdex G200 column (GE Healthcare) to enrich for trimeric

gp140 [42]. Purified fractions corresponding to the major peaks

were analyzed by SDS-PAGE and immunoblotting and protein

concentrations were determined by optical density measurement

at 280 nm.

Surface plasmon resonance assays
For protein immobilization by direct amine coupling to the

surface of CM5 sensorchips (GE Healthcare), samples were

dissolved in 10 mM Na acetate (pH 4.0). For binding studies,

HBS-P buffer (10 mM HEPES [pH 7.4], 0.15 M NaCl, 0.005%

vol/vol surfactant P20; GE Healthcare) supplemented with

10 mM CaCl2, was used. Flow rate was 20 ml/min. Equilibrium

dissociation constants (KD) as well as association (ka) and

dissociation constant (kd) rates were calculated using the

BIAevaluation software 4.1 (GE Healthcare). Curves were fitted

to the model which gave the best fit as judged by the lowest Chi2

value and best distribution of deviation from the calculated fit.

Determination of gp140 direct binding to DC-SIGN and

Langerin. Gp140 at 0.5 mg/ml was immobilized on the

sensorchip surface of flow cell 2 by direct amine coupling (560

and 620 resonance units (RU) for BX08 or IIIB, respectively).

Flow cell 1 served as reference. Binding of fluid phase DC-SIGN

(50–600 nM) or Langerin (25–200 nM) was then determined. The

sensorchip surface was regenerated with 10 mM EDTA.

Effect of soluble DC-SIGN and Langerin on stability of

gp140 interaction with CD4. Mab 5F3 (2 mg/ml) was

immobilized by direct amine coupling on both flow cell 1 and

flow cell 2 (approximately 6000 and 5500 RU, respectively) and

gp140 (100 nM) was injected over flow cell 2. DC-SIGN or

Langerin (both at 50 nM) were then injected over both flow cells

followed by injection of gp140 ligands (CD4, Mab b12, or Mab

447-52D) at varying concentrations. Reproducibility of binding of

gp140, DC-SIGN or Langerin binding was verified by repeated

injections. Difference sensorgrams of CD4 binding were obtained

after subtracting dissociation of 5F3:gp140 or 5F3:gp140:DC-

SIGN/Langerin complexes. Because of the very low dissociation

rate of the gp140:CD4 complex in the presence of DC-SIGN, rate

constants could not be calculated for this binding. To allow

comparison between binding 6 DC-SIGN, values for the half-life

(t1/2) of the complexes were calculated using the formula t1/2 = ln

2/kd (t1/2 = 0.693/kd).

No binding of DC-SIGN or CD4 to immobilised 5F3 was

evident in the control flow cell. In addition, in separate

experiments where CD4 was injected over immobilised DC-

SIGN, no binding of CD4 was detected.

Flow cytometry
To assess binding of soluble DC-SIGN to PM1 cells, serial

dilutions of protein (5–350,000 pM) were incubated with PM1

cells (0.256106) for 30 min at 4uC. Cells were washed three times

with cold PBS and incubated with 5 ml of anti-DC-SIGN Mab

(10 mg/ml, clone 120507) for 30 min followed by a further 30 min

incubation with FITC-conjugated goat anti-mouse IgG (Dako,

Cambridgeshire, UK). An isotype control murine antibody of

irrelevant specificity was used as negative control. Binding of HHA

to PM1 cells was assessed by incubation of PM1 cells with serial

dilutions of FITC-conjugated HHA (EY Laboratories, San Mateo,

CA, USA) for 30 min at 4uC. After incubation, cells were

extensively washed with PBS. FITC-conjugated Lotus tetragonolobus

lectin (Vectorlabs, Peterborough, UK) was used as negative

control. For some experiments, mannan (100 mg/ml) was added

to DC-SIGN or HHA before incubation with cells. The cells were

then analysed by a BD FACSCanto II flow cytometer using the

FACSDiva software (Becton Dickinson, Oxford, UK) and data

analysis was performed using the WinMDI 2.9 software.

Purification of viral particles and virus binding assays
Viral particles were inactivated using aldrithiol-2 as previously

described [45]. Inactivated virus was concentrated by spinning on

a 17–25% sucrose cushion at 35,000 rpm in a SW55Ti centrifuge

for 16 h as previously described [46]. Pellets were resuspended in

PBS supplemented with 10 mM EDTA and 1% BSA. CD45

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) were

added at a concentration of 10 ml/mg p24 and incubated with

mixing for 4 h. Virus was then concentrated again by centrifu-

gation on a 25% sucrose cushion at 55,000 rpm for 1 h. Samples
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were then resuspended in degassed PBS with 1 mM EDTA for

binding experiments. Binding activity of virions to soluble DC-

SIGN was assessed on a RapID4 acoustic biosensor (TTP

Labtech). Soluble DC-SIGN and BSA were covalently bound on

the experimental and control flow cells respectively by direct

amine coupling. Serial dilutions of purified or unpurified virus (34–

250 nM, determined by p24 ELISA and normalized assuming

2500 gag proteins per virion [46]) were prepared and allowed to

bind to the surface for 3 min, followed by 5–10 min of

dissociation. For experiments with unpurified virus, cell culture

supernatant of uninfected cells was used as negative control.

Surfaces were regenerated with 100 mM glycine-HCl, pH 2.5.

Data were fitted to the Langmuir kinetic model.

Cell viability assays
Cell viability was assessed by the in situ reduction of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT as-

say) [47]. PM1 cells (0.26106) were seeded in 96-well plates and

exposed to recombinant proteins for 72 h at 37uC. Cells were

washed with PBS and treated with MTT (0.5 mg/ml; Sigma) in

RPMI for 3 h. Cells were then solubilized overnight with 20%

SDS in H2O:DMF (1:1) and the absorbance determined at

570 nm, with reference at 630 nm. Viability was estimated by

comparison with viable cells exposed to medium alone and assays

were performed in triplicate.

Infections
For cis-enhancement assays, infection of the permissive cell line

THP-1 was compared with that of THP-1DC-SIGN. THP-1 and

THP-1DC-SIGN cells were infected with HIV IIIB or HIV IIIBx

at MOI of 1–461024. Two hours post-infection unbound virus

was washed off with three volumes of RPMI. After 10 days, p24

levels were measured by HIV p24 antigen ELISA. For assessment

of viral binding, THP-1 and THP-1DC-SIGN cells were

incubated with HIV IIIB or HIV IIIBx at p24 concentrations of

0–100 ng/ml. After 2 h cells were lysed with 1% Triton-X and

p24 levels were measured by ELISA. For infection assays with

soluble lectins, serial dilutions (in triplicate) of test protein (0–

40,000 pM) were pre-incubated with HIV-1 (BX08 or IIIB) at

1024 MOI (as determined in PM1 cells) for 30 min at 37uC and

subsequently added to PM1 cells (0.46105) in 96-well, round

bottom, tissue culture plates. For some experiments, mannan

(10 mg/ml) was added to the mixture of DC-SIGN and virus.

Cultures were incubated at 37uC for 10 days. Viral replication was

measured by p24 ELISA and defined as %p24 protein release in

the absence of test compound, which was defined as 100% and

corresponded to 68–100 pg/ml. 50% inhibitory concentrations

(IC50) were estimated by linear regression analysis using GraphPad

Prism 5 software (San Diego, CA). For all experiments heat-

inactivated virus (1 h at 56uC) was used as background correction.

Each condition was assayed in a minimum of three independent

experiments.

Spinoculation and fusion kinetics assays
To measure the rate of virus-cell fusion we used spinoculation to

provide synchronous infection [48,49]. Viruses (IIIB or IIIBx) at

361024 MOI were mixed with THP-1 and THP-1DC-SIGN cells

and centrifuged at 1,2006g, 4uC for 3 hours. Cultures were then

washed with fresh medium and warmed to 37uC prior to addition

of T-20 or Mab b12 at 10 mg/ml at the following time points: 0,

15, 30, 60, 120, 180, 240 and 360 min. Levels of p24 in the

supernatant were assayed after 4 days and relative infectivity

values were defined as %p24 protein released in the absence of

inhibitor for each virus and cell type, which was defined as 100%.

Heat-inactivated virus (1 h at 56uC) was used as background

correction. Each condition was assayed in triplicate in 4

independent experiments.

Statistics
Analyses were performed using GraphPad Prism 5. Normal

distribution of data was demonstrated using the D’Agostino-

Pearson normality test. Comparison of two data sets and

estimation of two-tailed P values was carried out using unpaired

t test with Welch’s correction.

Results

Expression and characterization of recombinant DC-SIGN
and Langerin

Recombinant polypeptides comprising the extracellular do-

mains of DC-SIGN and Langerin, respectively, were expressed in

E. coli, refolded and purified by affinity chromatography on Ni2+

and mannose resins sequentially. Identity of the polypeptides was

confirmed by peptide sequence analysis. Refolded DC-SIGN

bound to Mab 120507 with KD of approximately 261029 M as

determined by surface plasmon resonance (data not shown) in

agreement with previous findings [50]. The oligomeric state of

DC-SIGN and Langerin was determined by size exclusion

chromatography. Both proteins eluted as two well-resolved major

peaks corresponding to the molecular mass of the monomeric and

tetrameric forms of DC-SIGN (Fig. 1A) [50], and the monomeric

and trimeric forms of Langerin (Fig. 1B). Some non-lectin

components were also evident in a minor peak (labeled 3) in the

Langerin preparation. The relative distribution of the higher and

the lower molecular mass forms was 3.3:1 for DC-SIGN and 3.7:1

for Langerin. When fractions from the higher molecular mass peak

were re-chromatographed, the proteins redistributed with approx-

imately the same proportion of higher and lower molecular mass

forms (data not shown). In these preparations, the tetrameric form

of DC-SIGN and the trimeric form of Langerin predominate in

monomer:oligomer equilibria.

Recombinant DC-SIGN and Langerin bind HIV-1

gp140. Binding of recombinant DC-SIGN and Langerin to

soluble trimeric gp140 envelope glycoproteins was measured by

surface plasmon resonance. For these experiments, gp140 from HIV-

1 BX08 (R5 clade B) or IIIB (X4 clade B) was immobilized directly on

the sensorchip surface and binding of fluid phase DC-SIGN or

Langerin was determined over a range of concentrations (50–

600 nM for DC-SIGN, 25–200 nM for Langerin). Superimposed

sensorgrams are shown in Fig. 1C–F. Data could not be fitted to a 1:1

Langmuir binding model using the BIAevaluation software but, for

both DC-SIGN and Langerin, data fitted to a heterogeneous analyte

model in which it is assumed that both lectin preparations include

oligomeric and monomeric forms in the proportions indicated by the

gel filtration analyses. The equilibrium dissociation constants (KD2)

calculated for the tetrameric form of DC-SIGN were approximately

two orders of magnitude lower than those calculated for the

monomer (Fig. 1C and 1D). The difference can be attributed to

the lower dissociation constant (kd) estimated for the tetramer

compared with that of the monomer. In this model, tetrameric DC-

SIGN is the dominant form of the lectin that binds to gp140. The

KD2 values for tetrameric DC-SIGN binding to gp140 (BX08) and

gp140 (IIIB) were approximately 0.062 mM and 0.063 mM,

respectively, in agreement with values (0.003–0.061 mM) reported

previously for DC-SIGN binding to gp120 from 4 different strains of

HIV-1 [50]. The trimeric form of Langerin also bound to gp140 with

higher affinity than the monomer again attributed to the slower

dissociation of the trimer. Trimeric Langerin bound with higher
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affinity than DC-SIGN to gp140 with KD2 values of approximately

0.024 mM (BX08) and 0.011 mM (IIIB) (Fig. 1E and 1F).

DC-SIGN, but not Langerin, increases the stability of
gp140:CD4 complex

To investigate whether formation of the complex of DC-SIGN

with gp140 altered the affinity of interaction between gp140 and

CD4 and to compare the effect of DC-SIGN with that of

Langerin, a capture assay was used. The human anti-gp41 Mab

5F3 was immobilized on both experimental and reference flow

cells followed by injection of gp140 over the surface of the

experimental flow cell only. Mab 5F3 bound with high affinity to

both preparations of gp140 with KD values of approximately

3610211 M (Fig. 2A and 2B). As shown schematically in Fig. 2I,

Figure 1. Oligomeric state and binding activity of soluble DC-SIGN and Langerin preparations. (A, B) Size exclusion chromatogaphy of
DC-SIGN and Langerin, respectively. Elution positions of molecular mass standards (a: a-amylase, 200,000; b:ovalbumin, 45,000; c:carbonic anydrase,
30,000; d:transferrin, 76,000; e: myoglobin, 18,000) are arrowed. Inserts in panels show SDS-PAGE analyses of peak fractions as indicated. (C, D)
Superimposed sensorgrams of fluid phase DC-SIGN , binding to immobilised BX08 gp140 or IIIB gp140, respectively. Concentrations of fluid-phase
components are indicated. (E, F) Superimposed sensorgrams of fluid-phase Langerin, binding to immobilised BX08 gp140 or IIIB gp140, respectively.
Kinetic constants, calculated by using the heterogeneous analyte model (BIAevaluation 4.1 software), are indicated. KD2 and KD1 are equilibrium
binding constants of the oligomeric and monomeric, respectively, forms of the lectins.
doi:10.1371/journal.pone.0028307.g001
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DC-SIGN or Langerin was then injected (over both flow cells)

followed by CD4. Using this system, we compared CD4 binding to

gp140 (BX08 and IIIB) complexed with DC-SIGN or Langerin to

that of gp140 alone. Superimposed sensorgrams of fluid phase

CD4 binding to gp140 (BX08) in the absence of DC-SIGN (with

subtraction of gp140 dissociation from the capture antibody) are

shown in Fig. 2C. Again, the data could not be fitted to the 1:1

Langmuir binding model but were fitted to a two-step linked

reaction binding model The apparent KD, 2.4 nM, is in

agreement with previously reported values for CD4 interaction

with gp120 from BH10 [51] and JRFL [52]. When DC-SIGN was

injected and allowed to complex with gp140 (BX08) before

injection of CD4, the kinetics of interaction were considerably

altered. The superimposed sensorgrams (with subtraction of

dissociation of the gp140:DC-SIGN:5F3 complex) (Fig. 2E),

indicate a large decrease in the rate of dissociation of the complex.

An accurate estimation of the dissociation rate was not possible

and therefore other kinetic constants could not be calculated. We

therefore calculated the half life (t1/2) of the respective gp140:CD4

complexes to compare their stability. For the gp140:CD4 complex

formed in the absence of DC-SIGN, t1/2 was approximately

15 min whereas for the complex formed in the presence of DC-

SIGN t1/2 was .190 h (assuming a kd value of 1026 s21 as the

limit of detection using surface plasmon resonance), consistent

with an essentially irreversible interaction in this system. Although

Langerin bound to gp140 (BX08) with higher affinity compared to

DC-SIGN, no significant effect on CD4 binding was observed

when gp140 was complexed with Langerin (Fig. 2G), with t1/2 of

16 min for the Langerin:gp140:CD4 complex. DC-SIGN also

enhanced stability of the gp140 (IIIB) complex with CD4 (Fig. 2D

and 2F). A small decrease in the dissociation rate of the

gp140:CD4 complex was also evident in the presence of langerin

(Fig. 2H). CD4 (without prior addition of gp140) did not bind to

immobilized DC-SIGN or Langerin (data not shown).

CD4-dependency of DC-SIGN enhancement of infection
To investigate whether the increased stability of the CD4

complex with gp140 contributes to infection with HIV, we

compared the effects of cis-expression of DC-SIGN on in vitro

infection with HIV-1 IIIB and HIV-1 IIIBx, a variant of IIIB that

can bind directly to CXCR4 without CD4 [26,37]. Any effect of

enhancing infection by increasing the affinity of the envelope

protein for CD4 should be reduced in a strain that does not have

an absolute requirement for binding to CD4. This was tested by

comparing infection of THP-1 cells, which express low levels of

endogenous DC-SIGN, with infection of THP-1 cells transfected

with DC-SIGN (THP-1DC-SIGN) where DC-SIGN is expressed

at a higher level in cis on the cell surface membrane [24]. The DC-

SIGN+ population identified within THP-1DC-SIGN and THP-1

by FACS analysis was 35% and ,1% of total cells respectively

(data not shown).

Since the IIIBx strain lacks 5 N-linked glycosylation sites

compared with IIIB [37], some of which may be bound by DC-

SIGN [53], we first compared binding of IIIBx and IIIB virus

particles to soluble DC-SIGN by using an acoustic biosensor

system. IIIBx virus bound with higher affinity (KD = 2.061028 M,

assuming 2,500 copies of p24/virus particle [46]) than IIIB

(KD = 9.661028 M) (Fig. 3A and 3B). Binding of IIIBx and IIIB to

THP-1 and THP-1DC-SIGN cells was also tested in p24 ELISA-

based assays. In these experiments, binding levels to THP-1 and

THP-1-DC-SIGN cells were similar for both strains at virus p24

concentrations of 1.3–100 ng/ml (Fig. 3C and 3D), but both

strains bound 50–60% more to THP-1 DC-SIGN as compared to

THP-1. These observations show that the CD4 independent strain

IIIBx binds as well as IIIB to soluble DC-SIGN and THP-1DC-

SIGN cells.

HIV-1 strains IIIB and IIIBx were then tested for infectivity in

THP-1 and THP-1DC-SIGN cells. Significantly higher levels of

p24 in the supernatants of THP-1DC-SIGN cells were detected

than in the supernatants of THP-1 cells for both strains at 1–

361024 MOI with a higher level of enhancement evident at 1024

MOI. At higher concentrations of virus, levels of p24 were similar

in both cell types (data not shown). Data from a representative

experiment where cells were infected with IIIB or IIIBx, both at

1024 MOI, are shown in Fig. 3E and 3F. For both strains, higher

levels of p24 were measured in THP-1DC-SIGN cells. However,

whereas higher expression levels of DC-SIGN enhanced binding

of IIIB and IIIBx to the same extent, the actual infection of the

CD4 dependent IIIB is more enhanced (p = 0.001) than that of the

CD4 independent IIIBx (34-fold increase for IIIB, 8-fold increase

for IIIBx).

Effect of cis expression of DC-SIGN on kinetics of cell
fusion

Using the same system, we then compared the effect of DC-

SIGN on the kinetics of infection with IIIB and IIIBx strains. For

these experiments, HIV was adsorbed to cells by spinoculation at

low temperature to promote synchronous infection [48,49].

Cultures were warmed to 37uC and the fusion inhibitor T-20

was added to cultures at defined time intervals and at a completely

inhibitory concentration. The rate at which virus became resistant

to T-20 inhibition provides a measure of the rate of completion of

HIV fusion. There was no detectable infection when T-20 was

added to cultures up to 30 minutes after warming (Fig. 4A)

indicating the time required in this system for formation of the

fusion complex and subsequent adoption of the helix bundle

conformation. At the next time point (60 minutes) infection of

both THP-1 and THP-1DC-SIGN cells with both IIIB and IIIBx

strains was evident. As before, levels of infection were higher in

THP-1DC-SIGN cells (Fig. 4A). A plot of relative infection against

time (Fig. 4B) revealed significant differences in the rate of

infection of the two strains of HIV. Despite the difference in level

of infection (Fig. 4A), the relative rate of infection by HIV IIIBx

was similar for both THP-1 and THP-1DC-SIGN cells whereas

that of infection by IIIB was slower in THP-1 cells compared with

THP-1DC-SIGN cells (Fig. 4B). The more efficient capture of

virus by DC-SIGN leads to higher levels of infection but, in

addition, for a wholly CD4-dependent strain the relative rate of

infection is increased. We suggest that the increased rate is a

consequence of DC-SIGN stabilising the gp120:CD4 complex.

Addition of Mab b12 [28] at any time after spinoculation had no

effect, consistent with the finding that virus binds to CD4 during

spinoculation [48].

Effect of soluble DC-SIGN on HIV-1 infection in vitro
The data reported above indicate that cis expression of DC-

SIGN enhances infection with HIV-1 both by concentrating virus

at the cell surface and by stabilising binding of gp120 to CD4. We

compared the effects of soluble DC-SIGN or soluble Langerin on

HIV infection in vitro as a means of addressing whether the

increased stability of the CD4:gp120 complex contributes to DC-

SIGN enhancement of trans infection. In a previous study (28),

inhibition of infection of T cells was evident when soluble DC-

SIGN was added to virus in vitro at concentrations in the range of

2–200 nM. Furthermore, in separate assays, virus capture was

reduced by approximately 50% following addition of soluble DC-

SIGN at a concentration of approximately 2 nM. We therefore

carried out a titration of DC-SIGN that included sub-nanomolar
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concentrations. DC-SIGN, Langerin or the plant lectin HHA was

added to virus particles prior to addition of PM1 cells and p24

levels were determined after culture for 10 days. HHA has

previously been identified as a microbicide that binds to HIV

gp120 [54] [55]. At concentrations of DC-SIGN ,1 nM,

significantly increased p24 levels were evident in the supernatants

of both BX08 and IIIB strains compared to the control (no

treatment) with maximum enhancement of 3.6-fold and 15.3-fold,

respectively (Fig. 5A and 5C). At higher concentrations, DC-SIGN

inhibited replication, as previously described (28), with IC50 of

2.5 nM (BX08) and 4 nM (IIIB). In contrast, Langerin, and HHA

had no enhancing effect at sub-nanomolar concentrations but

inhibited infection with both HIV-1 strains in a dose-dependent

manner with IC50 values in the range of 1.6–5 nM (Fig. 5B and

5D), as previously reported for HHA (1). Both enhancing and

inhibitory activities of DC-SIGN were abrogated in the presence

of mannan (Fig. 5E) confirming that the effects are mediated by

carbohydrate binding. DnaJ (included as a control recombinant

polypeptide of irrelevant specificity) showed no significant effect.

None of the compounds showed toxicity in the MTT dye

reduction assay (Fig. 5F).

Both (enhancing) DC-SIGN and (non-enhancing) HHA lectins

bound to PM1 cells as observed by FACS analyses (data not

shown). At the highest concentration tested (300 nM) for each

lectin, the level of binding determined as mean fluorescence

intensity (MFI) of HHA to PM1 cells was higher (MFI = 22.15,

89.4%) than that observed for DC-SIGN (MFI = 8.89, 14.7%). We

cannot therefore exclude the possibility that enhancement of

infection was due to tetravalent DC-SIGN acting as a bridge to

bind virus to the PM1 cell surface. However, the observation that

tetravalent HHA binds more strongly to PM1 cells suggests that

bridging per se is not sufficient to enhance infection. We suggest

that at low concentrations, soluble DC-SIGN but not Langerin (or

HHA) stabilises interaction of gp120 on the virus surface with

CD4 to enhance infection. At higher concentrations, binding of

more than one molecule of soluble DC-SIGN to gp120 [53] may

sterically hinder binding to cell surface DC-SIGN.

DC-SIGN increases binding affinity of gp140 to anti-CD4-
binding site neutralizing Mab b12, but not to an anti-V3
Mab

The enhanced binding of CD4 to gp140 induced by DC-SIGN

may result from increased availability of the CD4 binding site. We

tested the effect of DC-SIGN on gp140 interaction with Mab b12

directed against the CD4 binding site and of Mab 447-52D

directed against the V3 loop of gp120 [29]. As described above,

gp140 was non-covalently bound on the experimental flow cell by

capture using immobilised Mab 5F3. Binding of Mabs b12 or 447-

52D at various concentrations was then measured in the presence

or absence of DC-SIGN. Fig. 6A shows superimposed sensorgrams

of fluid phase Mab b12 binding to gp140 (BX08) alone. The data

fitted the two-step dissociation model of binding with apparent KD

7.961029 M in good agreement with previous findings [56].

When DC-SIGN was bound to gp140 by prior injection,

dissociation of Mab b12 from the DC-SIGN:gp140 complex was

considerably reduced (Fig. 6B). The rate of dissociation (and

therefore kinetic constants) could not be determined (as shown in

Fig. 2 for CD4 binding to the same complex). Binding of Mab 447-

52D to gp140 in the presence or absence of DC-SIGN was also

measured in this system. DC-SIGN had no significant effect on

interaction of Mab 447-52D with gp140 (Fig. 6C–D).

Discussion

In this study, we have demonstrated that DC-SIGN-mediated

enhancement of infection with HIV-1 is the result not only of

increasing the concentration of virus at the cell surface as

suggested previously [24] but also of the increased affinity of the

DC-SIGN:gp120 complex for CD4. The C-type lectins DC-SIGN

and Langerin both bind to HIV-1 envelope protein but with

different outcomes. Whereas binding of HIV to DC-SIGN may

enhance infection, binding of HIV to Langerin leads to

internalisation and degradation of HIV, as outlined above. To

compare directly the effect of DC-SIGN and Langerin binding to

HIV-1 envelope protein, we developed a surface plasmon

resonance-based binding assay in which gp140 was immobilised

indirectly on the sensorchip surface by antibody, and binding of

soluble CD4 could be reproducibly measured with or without

prior binding of soluble DC-SIGN or soluble Langerin. The

findings revealed qualitative differences between binding of the

two C-type lectins. In this system, binding of DC-SIGN to

immobilised gp140 resulted in a large increase in the affinity with

which the complex bound to CD4 compared with binding of

gp140 alone. The increase in affinity was mainly due to a decrease

in the dissociation rate of the trimolecular DC-SIGN:gp140:CD4

complex compared with gp140:CD4. In contrast, Langerin had

little or no effect on the dissociation of CD4 from the complex with

gp140. These findings confirm those reported previously where

DC-SIGN binding to gp120 was shown to enhance binding of the

complex to CD4 using an ELISA-based system [57].

For the binding studies reported here, gp140 produced in

human 293T cells was used so that the glycosylation pattern more

closely resembles that of native envelope proteins of HIV-1

particles. Previous studies of HIV-1 gp120 produced in insect or

mammalian cells demonstrated marked differences in binding to

CD4 and some antibodies of the differently glycosylated forms

[58]. Significant differences in glycosylation between gp120

produced in 293T cells or in a T cell line (Jurkat) have also been

described [59] with 293T cell-derived material having less high

mannose and more complex N-linked glycans than the Jurkat-

derived material. However, in contrast to gp120, gp140 produced

in 293T cells shows a much simpler, predominantly oligomannose

profile of glycans that correlates well with the glycan profiles of

envelope proteins purified from functional virus particles produced

in 293T cells or human blood peripheral mononuclear cells [60].

Figure 2. DC-SIGN, but not Langerin, stabilises the gp140:CD4 complex. (A, B) Superimposed sensorgrams of fluid phase gp140 BX08 (5–
40 nM) or IIIB (5–10 nM), respectively, binding to immobilized Mab 5F3. Rate constants are indicated. (C, E, G) Superimposed sensorgrams of fluid
phase CD4 at varying concentrations (50–500 nM) binding to gp140 (BX08) alone (C) and in complex with DC-SIGN (E) or Langerin (G). (D, F, H)
Superimposed sensorgrams of fluid phase CD4 at varying concentrations (100–500 nM) binding to gp140 (IIIB) alone (D) and in complex with DC-
SIGN (F) or Langerin (H). Sensorgrams shown were obtained by subtracting the background due to gp140:5F3 or DC-SIGN:gp140:5F3 or
Langerin:gp140:5F3 dissociation from the curves obtained when CD4 was injected. Half-life values (t1/2 = ln 2/kd) are indicated. (I) Schematic
representation of the surface plasmon resonance-based assay used. Gp140 was non-covalently bound on flow cell 2 to Mab 5F3 which was
immobilized on flow cell 1 and flow cell 2 by direct amine coupling. Binding affinity of CD4 (injected on flow cell 1 and flow cell 2) was assessed in the
presence or absence of DC-SIGN or Langerin bound to gp140.
doi:10.1371/journal.pone.0028307.g002
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Figure 3. Binding properties and infectivity of CD4-dependent (IIIB) and CD4-independent (IIIBx) strains of HIV-1. (A, B)
Superimposed sensorgrams (acoustic biosensor) of fluid phase IIIB (A) and IIIBx (B) viral particles (34–250 nM determined by p24 ELISA and
normalized assuming 2500 gag proteins per virion) binding to immobilized DC-SIGN. KD values are indicated. (C, D) Binding of IIIB and IIIBx to THP-1
(C) and THP-1 DC-SIGN (D) cells. Virus was incubated with cells for 2 h and after washing and cell lysis, p24 levels were estimated. Experiments were
repeated twice, each point in triplicate. (E) Infection (1024 MOI) by IIIB and IIIBx of THP-1 DC-SIGN and THP-1 cells represented as concentration of
p24 antigen released in the supernatant. (F) Data from (E) as fold-increase in infection relative to THP-1. IIIBx infection level was significantly lower
than IIIB (**, P = 0.001). Experiments were repeated twice (5 replicates).
doi:10.1371/journal.pone.0028307.g003
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We also used preparations of DC-SIGN and Langerin that were

mostly tetrameric or trimeric, respectively, reflecting the oligo-

meric structure of the cell surface forms of these lectins [41,61] and

in which binding was predominantly by the oligomeric forms.

Although both DC-SIGN and Langerin bind to oligomannose

structures on the HIV envelope protein, significant differences in

the binding properties of DC-SIGN and Langerin revealed by

crystallographic studies [62,63] may account for the observation

that DC-SIGN but not Langerin increases the affinity of gp140 for

CD4. DC-SIGN binds preferentially to the outer trimannose

branch point within N-linked high mannose glycans [62] whereas

Langerin binds preferentially to linear oligomannoses [64,65]. The

carbohydrate recognition domain of Langerin includes a novel

second carbohydrate binding site in addition to the site conserved

in C-type lectins [66]. Modelling studies suggest that N-linked high

mannose glycans may bind to Langerin through a terminal

mannose residue of one branch at the conserved site and two

mannose residues of another branch at the alternative site [67]. In

addition, the 3 carbohydrate recognition domains within the

Langerin trimer are fixed in position by multiple interactions with

the neck region [64] and likely to bind to a preformed target site.

In contrast, the carbohydrate recognition domains of tetrameric

DC-SIGN are more flexible [63] and may therefore bind to a

wider range of glycans.

To determine whether the increased affinity of the DC-

SIGN:envelope bimolecular complex binding to CD4 contributed

to DC-SIGN mediated cis enhancement of infection, as suggested

previously [57], we used a cellular model of infection [18,24] that

compares infection of DC-SIGN transfected and non-transfected

THP-1 cells. Although the effect of DC-SIGN was to increase

infection by both CD4-dependent and CD4-independent strains of

HIV, the level of enhancement was consistently lower for the

CD4-independent strain. In the same model, we also determined

kinetics of infection for both HIV strains in the two cell types. For

this we used spinoculation at low temperature to produce

synchronous infection of cells [48,49] and then measured the rate

at which inoculated HIV became resistant to the fusion inhibitor

T-20, corresponding to the time required for adoption of the six-

helix bundle conformation of gp41 [68]. In contrast to IIIBx where

the relative rate of infection is not affected by DC-SIGN, the

relative rate of infection of IIIB was increased by cis expression of

DC-SIGN such that it was similar to that of the CD4-independent

strain. Thus the increased stability of gp120:CD4 interaction

conferred by DC-SIGN contributes in turn to faster formation of

the six-helix bundle. Binding analyses combined with structural

determination [69] have indicated rapidly reversible binding of

CD4 to gp120 in which CD4 binds to a site that is constitutively

exposed but then readily dissociates. The complex may be

stabilised by multiple copies of CD4 at the surface of T cells. In

contrast, the low levels of cell surface CD4 in DCs [11] may not

provide the increased avidity required to stabilise the initial

gp120:CD4 complexes. Data from this study shows that DC-SIGN

may significantly contribute to cis infection by decreasing the

dissociation of CD4, thereby promoting formation of the complex

with gp120 leading to more rapid co-receptor binding and fusion.

This may be a significant factor in infection of DCs. The IIIBx

strain retains CD4 binding activity showing enhanced fusion

activity when CD4 and CXCR4 were coexpressed on target cells

for fusion assays [37] and we cannot rule out such activity

contributing to infection in the assays performed in this study. The

observation that the relative rate of infection with IIIBx is not

affected by cis expression of DC-SIGN, however, suggests that

DC-SIGN enhances infection of this strain only by increasing the

level of virus binding to the cell surface. It is striking that DC-

SIGN increases the relative rate of infection with the parental IIIB

strain so that it resembles that of IIIBx indicating that the

increased stability of the DC-SIGN:Env:CD4 complex may lead to

more rapid co-receptor engagement.

The system used here of comparing CD4-dependent and CD4-

independent virus strains in the presence or absence of DC-SIGN

to distinguish between the DC-SIGN-mediated effects of increas-

ing binding of virus to the cell surface and increasing the stability

of the gp120:CD4 complex cannot be applied to trans enhance-

ment of infection. We therefore investigated the effect of

inoculating virus in the presence of soluble DC-SIGN in

comparison with the effect of adding soluble Langerin or HHA.

At low concentrations, only DC-SIGN mediated enhancement of

infection whereas at higher concentrations all lectins were

inhibitory. We suggest that inhibition is due to excess bound

lectin sterically blocking the site for binding CD4 whereas, at low

concentrations of DC-SIGN, DC-SIGN:envelope complexes on

Figure 4. Effect of DC-SIGN on the kinetics of infection with IIIB
and IIIBx. Virus was adsorbed to cells by spinoculation at 4uC. Cultures
were warmed to 37uC and T-20 (completely inhibitory concentration)
was added at the time points indicated. (A) Representative experiment
showing levels of p24 measured in 4 day cultures following addition of
T20. Each point was determined in triplicate. (B) Relative infection
calculated as % p24 concentration relative to p24 concentration in 4
day cultures with no T-20. Levels of p24 in the absence of T-20 were
determined in triplicate for each strain in each cell type in 4 separate
experiments. Error bars are standard errors of means (n = 4).
doi:10.1371/journal.pone.0028307.g004
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the virus surface bind more avidly to CD4 on the target cells. The

multivalent lectins used in this experiment recognise carbohydrate

structures on the host cell and could enhance infection by acting as

a bridge to target HIV to the cell surface. We demonstrated,

however, that although both HHA and DC-SIGN bound to the

PM1 cells, used as permissive targets, only DC-SIGN enhanced

infection suggesting that the specificity of lectin interaction but not

bridging contributes to enhancement.

We also showed that DC-SIGN increases the affinity of

binding of the broadly neutralising monoclonal antibody b12

which recognises an epitope that largely overlaps with the CD4

binding site of gp120 [69] consistent with the proposal that DC-

SIGN exposes the CD4 binding site. Similarly, binding of the

mannose-rich glycan-specific lectin, griffithsin, to gp120 has

been shown to enhance binding of b12 and modestly enhances

binding of a soluble form of CD4 [70]. The N-linked glycan at

position 386 contributed partly to griffithsin-mediated en-

hancement of binding. This glycan was also identified as a

component of the optimal DC-SIGN binding site on gp120

[53]. Molecular modelling suggests that this glycan shields the

Figure 5. DC-SIGN, but not Langerin, enhances replication in PM1 cells by HIV-1. Levels of p24 are represented as %p24 production in the
control wells, which was defined as 100%. Each condition was assayed in triplicate in two independent experiments. (A, B) Effect of soluble DC-SIGN
(A), Langerin and HHA (B) on PM1 cells infection by HIV-1 (BX08). (C, D) Effect of soluble DC-SIGN (C), Langerin and HHA (D) on PM1 infection by HIV-
1 (IIIB). DnaJ (n), used as control protein, and mannan alone (6) showed no significant effect. (E) Effect of soluble DC-SIGN at increasing
concentrations on PM1 cells infection by HIV-1 (BX08) in the presence (n) and absence (m) of mannan at 10 mg/ml. (F) Effect of DC-SIGN and
Langerin on viability of PM1 cells assessed by MTT dye reduction assays.
doi:10.1371/journal.pone.0028307.g005
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CD4 binding site and enhanced macrophage tropism was

observed in a HIV Env variant that lacked the glycan at

position 386 [71]. Thus we suggest that DC-SIGN binding to

the N-linked glycan at position 386 may contribute to exposure

of the CD4 binding-site and DC-SIGN-mediated enhancement

of infection. This glycan is not essential for DC-SIGN-mediated

virus capture since it is one of five N-linked glycans lacking in

gp120 of the IIIBx strain [37].

Binding of HIV to DC-SIGN on the surface of DCs may

have a number of different outcomes. In the absence of

productive infection, virus may be transmitted in trans to

permissive target cells. In addition, by concentrating virus at

the DC cell surface, DC-SIGN increases the likelihood of

interaction in cis with DC cell surface CD4 and co-receptor as

suggested previously [22,24] leading to infection in cis. In

parallel, DC-SIGN also mediates internalisation and degrada-

tion of HIV in endosomes [16,17]. Recognition of released

HIV-1 genomic RNA by TLR8 and binding of HIV-1

envelope protein to DC-SIGN provide two signals that are

essential for initiation of transcription and production of full

length viral transcripts [72], thus also enhancing infection in

cis. In this study, we demonstrate a further effect of DC-SIGN

that contributes to enhanced infection either in cis or in trans,

namely significantly increasing the half-life of the envelope

glycoprotein:CD4 complex which in turn promotes co-receptor

engagement.
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Figure 6. DC-SIGN increases binding affinity of gp140 to Mab b12, but not to Mab 447-52D. (A, C) Superimposed sensorgrams
representing binding of fluid phase Mab b12 (A) and Mab 447-52D (C) at the concentrations indicated to gp140 (BX08) alone. (B, D) Superimposed
sensorgrams representing binding activity of fluid phase Mab b12 (B) and Mab 447-52D (D) at the concentrations indicated to gp140 (BX08) in
complex with DC-SIGN. Gp140 was non-covalently bound on flow cell 2 to Mab 5F3 which was immobilized on flow cell 1 and flow cell 2 by direct
amine coupling. Binding affinity of the antibodies (injected on flow cell 1 and flow cell 2) was assessed in the presence or absence of DC-SIGN also
injected over both flow cells.
doi:10.1371/journal.pone.0028307.g006
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