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Abstract 

Background: Genomic surveillance of malaria parasite populations has the potential to inform control strategies and 
to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) 
markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission 
settings, since ‘universal’ barcodes can lack resolution at the local scale. A SNP barcode was developed that captures 
the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance.

Methods: Using 20 high‑quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs 
were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequenc‑
ing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono‑ and poly‑
clonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. 
vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast 
of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against 
that of ten microsatellite markers used in previous population genetics studies.

Results: From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI refer‑
ence genome with deep coverage (median = 563, range 56–7586) per locus across genotyped samples. Of 178 SNPs 
assayed, 146 produced high‑quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. 
No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of 
samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in 
genetic diversity between populations and geographical population structure. The SNP barcode also enabled assign‑
ment of genotypes according to their geographic origins with a significant association between genetic distance and 
geographic distance at the sub‑provincial level.

Conclusions: High‑throughput SNP barcoding can be used to map variation of malaria transmission dynamics at 
sub‑national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to 
field settings highly feasible.
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Background
Plasmodium vivax is the most widely distributed human 
malaria parasite outside sub-Saharan Africa, account-
ing for approximately 7.4 million clinical cases per year 
[1]. Despite previously being categorized as a benign 
infection, studies have revealed that P. vivax can cause 
severe and life-threatening malaria and some cases may 
be drug resistant [2–5]. Features of P. vivax biology such 
as relapse, low-density infections and the appearance of 
transmission forms (gametocytes) prior to detectable 
clinical symptoms [6, 7], are a challenge for controlling 
and eliminating this  disease. These characteristics, in 
addition to the high proportion of asymptomatic P. vivax 
infections in combination with increasing human move-
ment also pose a significant challenge to malaria elimi-
nation [8, 9]. Establishing a strong malaria surveillance 
system is essential to monitor the changing malaria land-
scape and to achieve elimination goals.

Currently endemic countries rely on traditional malaria 
surveillance approaches such as Light Microscopy 
(LM) and rapid diagnostic test (RDTs) [10, 11], or more 
recently, through molecular diagnosis (PCR) of infection 
[12] to measure infection prevalence and provide an esti-
mate of transmission intensity. Population genetics how-
ever can measure parasite genetic diversity, population 
structure, gene flow and relatedness of genotypes to help 
define transmission “zones”, local transmission dynamics 
[13, 14], to identify the source(s) of outbreaks [15], dis-
tinguish between local or imported cases [16, 17], and 
track imported infections [18–20]. In combination with 
epidemiological data this can help to guide control strate-
gies and to monitor the effect of interventions facilitate 
malaria elimination [21, 22].

Capturing accurate population genetic signatures and 
tailoring molecular tools to the local malaria transmis-
sion scenario depends on the appropriate selection and 
use of informative molecular markers [23]. For over a 
decade, malaria population genetists have used panels 
of 6-12 microsatellites for assessment of malaria parasite 
transmission dynamics, its origins and dispersal [24–26]. 
Microsatellites have several advantages including being 
neutrally evolving [27, 28], multiplexing can be easily 
done for ten or more markers in a single PCR cocktail 
and they are abundant in the genome [29]. Despite these 
advantages, microsatellites have high PCR amplification 
biases that may  cause incorrect classification of domi-
nant and minor haplotypes [30]. Furthermore the small 
number of markers, high mutation rate and difficulty 

of scoring alleles accurately decreases the resolution of 
microsatellite markers to identify related parasites [26]. 
Due to their high diversity, parasite population sub-
structure may be missed in areas of high transmission 
since existing panels of 10 to 14 markers may provide 
inaccurate estimates of relatedness. Furthermore, micro-
satellite genotyping is difficult to standardize across labo-
ratories, reproducibility is lacking, and amplicons require 
fragment analysis at core sequencing facilities [28, 31]. 
Whole genome sequencing (WGS) is not widely used 
in malaria-endemic countries since it is costly and data 
analysis needs advanced bioinformatic tools and exper-
tise [18].

As countries intensify their control programmes 
and approach malaria elimination, a robust, cost effec-
tive, rapid and easy-to-use set of molecular markers 
is urgently required as an alternative genotyping tool 
to rapidly track disease spread and imported cases. So-
called ‘barcodes’ composed of a panel of single nucleotide 
polymorphisms (SNPs) can be used to profile each para-
site isolate and to generate population genetic insights 
[32–34]. SNP barcoding is more easily standardized 
across studies and offers more rapid and highly auto-
mated genotyping options compared to microsatellites 
[23, 35]. Putatively universal (global) barcodes of 42 P. 
vivax SNPs have been developed and tested for their util-
ity to determine parasite population structure [33]. How-
ever, there has been limited validation of these markers 
in different endemic settings to determine whether they 
are informative for all P. vivax populations. Informa-
tive barcodes need to distinguish between populations 
circulating in distinct geographic areas at sub-national 
resolution, as this is essential to inform malaria control 
programmes.

Universal barcodes may not provide an accurate esti-
mate of local population structure due to ascertainment 
bias occuring  if the SNP panel used was developed for 
populations other than those to be studied. That is, SNPs 
may be polymorphic (informative) in some popula-
tions, but not in others [31, 36, 37]. Ascertainment bias 
is a limitation to measuring the true allele frequency [38] 
resulting in minor allele frequency (MAF) biases in pop-
ulations not included in ascertainment group [38, 39]. 
Thus, global P. vivax SNP marker selection [33] may limit 
the resolution of this barcode to genotype parasite pop-
ulations not closely related to the ascertainment group. 
Moreover, recent intensive malaria control activities may 
lead to changes in MAF with a loss of rare variants [19, 
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20] that could reduce the power of the existing SNP bar-
code to distinguish between different genotypes. The use 
of population genomic data to aid malaria control relies 
on having this insight at regional or sub-national reso-
lution, and will vary for different endemic settings and 
stages in the elimination pipeline [23]. Therefore, validat-
ing available barcodes or developing a new barcode that 
accurately captures the diversity of a country’s parasite 
population will facilitate characterization of the local 
malaria transmission scenario.

Here, we describe the development of a SNP barcode 
designed to capture the diversity of P. vivax populations 
of Papua New Guinea (PNG), which has the highest 
transmission of P. vivax in the world [40, 41]. SNP bar-
codes have been employed in several studies in recent 
years [15, 16, 23, 33], however their performance has 
not been compared to microsatellites, a commonly used 
genotyping tool [42–44] and used in our previous studies 
[9, 45–47]. We thus compared parasite population genet-
ics using the newly developed SNP barcode with that for 
microsatellite markers to address the following research 
questions: (1) do these two marker panels capture para-
site diversity at the sub-provincial scale at the same 
resolution, and (2) which marker panel has higher reso-
lution to capture parasite geographic connectedness and 

population structure? Comparisons of SNP and micros-
atellite data demonstrates the superiority of this locally 
validated SNP barcode for monitoring parasite popula-
tions and tracking the source of infections.

Methods
This study aimed to develop a SNP barcode for high-res-
olution genomic surveillance of P. vivax in PNG (poten-
tially applicable to other P. vivax endemic areas) and to 
benchmark it against an existing microsatellite marker 
panel that has been used in previous population genetic 
surveys. The study was performed using P. vivax isolates 
from four locations within a contiguous highly endemic 
region of the north coast of PNG, specifically in East 
Sepik (n = 1) and Madang Provinces (n = 3) (Fig.  1), 
where cross-sectional surveys and population genetic 
analyses were previously conducted using microsatellite 
markers [47]. Previous microsatellite analysis of these 
populations in 2005 and 2006 failed to identify any geo-
graphic population structure [46, 47].

Plasmodium vivax isolates
For the genotyping, we selected a total of 94 P. vivax posi-
tive isolates collected during two cross-sectional surveys 
on the north coast of PNG including one population 

Geographic areas:
East Sepik (Illaita)

Malala 

Mugil 

Utu

East Sepik Province

Madang Province

Fig. 1 Map of the study area. Map of Papua New Guinea showing the location of four distinct catchment areas from which P. vivax isolates were 
obtained (colored dots). A total of 94 P. vivax isolates were selected from 2012/13 East Sepik and 2014 Madang cross‑sectional surveys. Samples 
were genotyped using both SNP barcodes and microsatellites. n = the number of genotyped P. vivax isolates. Black dots indicate three provinces of 
PNG where 20 WGS P. vivax obtained for the assay development
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from East Sepik, collected in 2012/13 and three popula-
tions from Madang Provinces (Malala, Mugil and Utu) 
collected in 2014 (Fig. 1) [48]. These P. vivax isolates were 
selected due to the availability of published microsatellite 
data [49], which was used to compare with SNP barcode 
data.

Selecting candidate SNPs
The software package, Genome Analysis Toolkit (GATK) 
[50] was used for selection of informative SNPs from 
published WGS data for 40 P. vivax isolates from three 
regions of PNG (Madang, East Sepik/Maprik and Milne 
Bay/Alotau) [14, 51] (Additional file  1: Table  S1). WGS 
data quality was checked using Fastqc and coverage 
checked using Bam coverage to identify high quality 
genomes. To identify informative SNP variants, paired-
end raw reads were aligned to P. vivax Salvador I strain 
(PvSal1) [52] using the bwa-mem mapping algorithm 
[53]. SNPs were called and filtered using GATK Haplo-
typeCaller [50]. To ensure uniform coverage of the whole 
parasite genome, variants present on 14 nuclear chromo-
somes were included after excluding all indel calls and 
‘blacklisted’ highly polymorphic regions including the 
telomeres. Additional ‘hard filtering’ included retaining 
only biallelic single nucleotide variants (SNVs), high cov-
erage (at least 90% of their bases covered up to 5x) SNPs, 
with a minor allele frequency (MAF) > 10% (0.10), with 
pairwise LD < 0.2 throughout a window of (0.5  kb), low 
positive or negative Tajima’s D values (|Tajima’s D| < 0.5) 
throughout a window of 0.5  kb, high heterozygosity 
(> 0.4) within PNG, and if they were relatively uniformly 
spaced across the P. vivax genome. From a total of 24,283 
SNPs with MAF > 10%, 4006 remained after filtering and 
220 relatively evenly spaced SNPs were selected for assay 
development (Additional file 2: Figure S1).

SNP barcoding assay development
The assay consists of a series of 20 × 8-10-plex PCRs, 
with multiplexed amplification of the target regions 
(PCR#1) using Locus-Specific Primers (LSP) contain-
ing universal Illumina overhang adaptors (OH), attach-
ing to all amplicons from each sample (PCR#2) a short 
sequence tag (multiplex identifier, MID) unique to each 
sample. This was followed by pooling of all amplicons 
after indexing each sample and sequencing on an Illu-
mina MiSeq (Additional file 2: Figure S2).

The major problem with multiplex PCR is primer 
dimer formation and melting temperature  (Tm) variation 
between primers. To minimize these challenges, Prim-
erPlex software [54] was used to design multiplex PCRs 
using LSP pools for target 400bp genomic regions which 
contain SNPs of interest. A total of 22 multiplex  PCRs 

were designed, with each containing 8–12 LSP pairs (220 
SNPs total).

Primary multiplex PCRs  were performed and opti-
mized for each  pool using published guidelines [55]. 
From a total of 220 SNPs, 42 were negative and were not 
amplified in the primary multiplex PCR. The remain-
ing 178 SNPs were used for the assay development 
(Table  S2). The optimized conditions for the primary 
PCR  (PCR#1) required 2  μl of sample (20–40  ng DNA 
template) in a 20 μl reaction consisting of 0.3 mM each 
dNTP, 3 mM  MgCl2, 1X buffer (B1), 0.2 μM primer pool, 
and 1unit of Hotstart DNA polymerase. The PCR condi-
tions consisted of an initial denaturation step of 12 min at 
95 °C, followed by 30 cycles of 15 s at 95 °C, 30 s at 60 °C, 
and 30 s at 72 °C, and a final 5 min extension at 72 °C.

SNP barcoding assay optimization
To optimize the assay, a total of six (three monoclonal 
and three polyclonal infections) P. vivax positive field 
samples were genotyped using 20 randomly selected SNP 
markers (2 multiplex sets) from a total of 178 described 
in the above section. The amplicon sequencing approach 
was used to amplify all 20 P. vivax genomic loci with tar-
get SNPs in multiple samples at a time. Following the 
optimization, the assay was applied to a total of 94 P. 
vivax positive field samples.

Due to the small size of the Plasmodium genome in 
comparison to the human genome, the presence of just a 
few nucleated human cells in field specimens can impede 
genotyping or sequencing sensitivity and specificity by 
contributing a large proportion of unwanted human 
DNA to the DNA sample. Thus, to obtain enough para-
site DNA from field samples and to minimize contami-
nating human DNA, digestion with the McrBC enzyme, 
which is a DNA methylation-dependent restriction 
enzyme (MDRE), followed by random whole genome 
amplification (rWGA) [56, 57] was used. In brief, diges-
tion of human gDNA was done using the McrBC (meth-
ylation dependent) enzyme (New England Biolabs, 
United States) followed by whole genome amplifica-
tion (WGA) of Plasmodium DNA by very high fidelity 
Phi29 DNA polymerase proofreading enzyme using the 
V2 DNA Amplification Kit (GE Lifesciences, Australia). 
The main aim of this protocol is to deplete contaminat-
ing human DNA in malaria field isolates by selectively 
digesting highly methylated DNA (human) followed by 
WGA of the remaining high molecular weight DNA (pre-
dominantly parasite). This enriches Plasmodium DNA 
for further use (e.g. SNP genotyping or whole genome 
sequencing). The protocol uses a minimum starting vol-
ume of 6ul of DNA extracted from human blood samples 
and works well even with low-density samples.
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Primary PCR was performed to amplify target loci 
using optimized PCR#1 conditions as described in above. 
Then, primary PCR amplicons of each sample from two 
multiplex reactions were combined and purified using a 
QIAquick PCR Purification Kit (Qiagen) as per the man-
ufacturer’s protocol. The amount of DNA in the primary 
PCR was measured using the Qubit DsDNA High Sensi-
tivity (HS) Assay Kit (Thermo Fisher Scientific, Scoresby, 
Victoria, Australia) and normalized by diluting over-
represented amplicons in PCR grade water. The second-
ary PCR reaction (PCR#2) was performed using cleaned 
primary PCR products as a template. Illumina adapters 
and a six-nucleotide sequence specific to each individual 
sample (MID index) was added to the template. The opti-
mized conditions for PCR#2 requires 2  μl of combined 
primary PCR product in a 20  μl reaction consisting of 
0.3 mM each dNTP, 3 mM  MgCl2, 1X buffer (B1), 1 μM 
forward index primer, 1 μM reverse index primer and 1.5 
unit of Hot Start DNA polymerase (QIAGEN). The PCR 
conditions consisted of an initial denaturation of 3 min at 
95 °C followed by 25 cycles of 15 s at 95 °C, 30 s at 60 °C, 
and 30 s at 72 °C, and a final 7 min extension at 72 °C.

Equimolar amounts of each amplicon pool from all 
samples were combined into a single tube and purified 
using AMPure XP magnetic beads (Beckman Coulter) for 
library preparation. Standard sequencing libraries were 
prepared following the manufacturer’s recommended 
protocol and sequenced using in an Illumina MiSeq plat-
form to generate (2X300) paired end reads. The TruSeq 
Custom Amplicon Sequencing Kit (Illumina, Inc) was 
used to allow 96 or more samples with integrated bar-
codes to be pooled prior to sequencing on an Illumina 
MiSeq.

Data analysis
Bioinformatic analysis
The raw FASTQ files were demultiplexed by binning 
based on the MID index, the read quality was checked 
using FastQC (Version 0.8.0) (https ://www.bioin forma 
tics.babra ham.ac.uk/proje cts/fastq c/) and combined 
FastQC output for all samples were visualized using Mul-
tiQC [58]. Low-quality reads (< Q30), adaptors, primers, 
and reads shorter or longer than expected size of ampli-
con were trimmed using Trimmomatic [59]. Only reads 
that passed stringent quality filters progressed for align-
ment and variant calling.

Unmapped BAM files were generated from quality fil-
tered and trimmed FASTQ files using the FastqtoSam 
function (http://broad insti tute.githu b.io/picar d/). The 
combined pipeline was then used to generate indexed, 
mapped BAM files. This pipeline consists of SamToFastq, 
bwa-mem and MergeBamAlignment to map reads, and 
generated a clean and indexed mapped BAM file. In brief, 

the sequenced reads were mapped to the P. vivax Salva-
dor I strain reference genome bwa mem [50] (Additional 
file 2: Figure S3). Overall quality and genome coverage of 
mapped bam files were checked using QualiMap v.2.2.1 
[60]. We set a minimum cutoff of 50-fold coverage and 
successful genotyping of loci in at least 60% of sequenced 
samples to avoid inclusion of PCR and sequencing errors. 
After removing unsuccessfully amplified loci, the cover-
age and the frequencies of the reference and alternative 
alleles were determined using the samtools mpileup func-
tion [61] for each sample and SNP. A VCF file from the 
samtools mpileup analysis output was further filtered 
using vcftools to remove sites containing insertions and 
deletions [62]. Finally, all selected SNPs were further 
confirmed by visually inspecting the individual mapped 
reads using IGV software [63].

Population genetic analyses
Alternative allele frequency (AAF) was computed as the 
proportion of genotyped samples whose genotype was 
not the reference allele for target loci. MAF was com-
puted as the proportion of genotyped samples carrying 
the genotype that was least common (i.e. MAF = AAF if 
AAF < 0.5; MAF = (1-AAF) if not). To estimate the actual 
number of clones per sample the  VCF file containing 
SNP data was converted to The Real McCOIL categori-
cal method format: heterozygous call (0.5), homozygous 
minor allele (0), homozygous major allele (1) and no call 
(−1) and used as an input file for analysis of multiplic-
ity of infection (MOI) using The Real McCOIL R package 
[63]. Input files for genetic analysis were created using 
the and PGDSpider (version 2.0.0.3) [65]. Genetic diver-
sity was calculated as SNPπ using DnaSP Version 5.0 [64] 
for SNP data, and expected heterozygosity (He) and allelic 
richness, using the FSTAT  software, version 2.9.4 for 
microsatellite data [65]), were calculated. Genetic differ-
entiation (FST) was determined using DnaSP Version 5.0 
[66] for SNP data and FSTAT  2.9.4 [67] for microsatel-
lites. The Mantel Test was performed to measure associa-
tions between genetic distance and spatial geographical 
distance between catchments, using the R “Vegan” pack-
age [68]. Phylogenetic analysis was done based on the 
distance metric 1-PS using the  “Ape” R package and the 
‘dist.gene’ function for SNP and microsatellite data and 
visualized using the FigTree software, version 1.4.3.

The Bayesian clustering software, STRU CTU RE ver-
sion 2.3.4 [69] was used to determine the number of 
discrete genetic clusters (K) and whether haplotypes 
cluster according to geographical origin. STRU CTU RE 
runs were performed with a burn-in period of 100,000 
followed by 100,000 Monte Carlo steps. The simula-
tions were replicated 20 times with different seeds for 
K values ranging from 1 to 20. The optimal K value was 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
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calculated based on Evanno’s method of ΔK statistics. 
The CLUMPAK web-based server was used for sum-
mation and graphical representation of the STRU CTU 
RE results. The assumptions underlying the popula-
tion genetics model in STRU CTU RE software may limit 
its use to detect malaria parasite population structure 
with declining transmission. Unlike natural populations, 
malaria parasites undergo inbreeding, clonal propaga-
tion, and there will be an absence of panmictic conditions 
when transmission declines. Therefore, to further explore 
parasite clustering the discriminant analysis of principal 
components (DAPC) was performed using the R package 
“Adegenet” [70]. DAPC is robust to Hardy–Weinberg dis-
equilibrium or linkage disequilibrium [71].

Statistical analysis
The Mann–Whitney U test or a one-way analysis of vari-
ance were used to measure differences among two groups 
or more than two groups, respectively. To assess the con-
cordance between genotype allele sharing by SNPs and 
microsatellite markers we performed correlation analysis 
using Kendall’s Tau. Statistical analyses were performed 
using GraphPad Prism Software version 7.0 and a p value 
of ≤ 0.05 was considered statistically significant.

Results
Identification of SNP candidates
From a total of 40 P. vivax isolates from PNG, 23 were 
sequenced at the Broad Institute (BI) in Boston, MA, 
USA [14] and the remaining 17 were sequenced at the 
Wellcome Trust Sanger Institute (WTSI), Cambridge 
UK as part of the MalariaGEN Plasmodium vivax Com-
munity Project [51]. To include the highest quality sam-
ples for SNP selection, 16 isolates were excluded due to 
low quality and poor coverage (less than 90% of their 
bases covered up to 5x) or to remove the lowest quality 
genome of any duplicated samples (4 isolates). Addition-
ally, four samples derived from sequencing pooled iso-
lates were excluded from analysis since pooling could 
affect variant calling. The remaining 20 P. vivax genomes, 
originating from three hyper-endemic provinces of PNG 
(Madang = 17, East Sepik = 2, Milne Bay = 1, Fig.  1, 
Additional file 1: Table S1), were used to select informa-
tive SNPs. From a total of 405,825 variants present on 
14 nuclear chromosomes, 144,517 were included after 
excluding all indel calls and ‘blacklisted’ highly polymor-
phic regions including the telomeres. Finally, after addi-
tional ‘hard filtering’ (see “Methods”), 220 SNPs with 
MAF greater than 10% and relatively uniformly spaced 
across P. vivax genome were selected for assay develop-
ment (Additional file 2: Figure S1).

Assay development
Six P. vivax field isolates were used to develop and opti-
mize the new SNP genotyping assays. To evaluate the 
amplification of each target locus in the multiplex PCR, 
single-plex PCR was performed using primary multi-
plexed PCR products as the template. Of the six samples, 
three contained single clones (multiplicity of infection, 
MOI = 1) and the remaining three samples had two 
clones (MOI = 2) based on Pvmsp1F3 and Pvms16 gen-
otyping [48]. Polyclonal infections were included to 
assess amplification bias of SNP alleles in complex infec-
tions due to multiple amplification steps. Of the 220 
primer pairs tested, 178 produced a single clear band of 
the expected size. These 178 SNP loci were then used 
to develop a multiplex PCR, for further genotyping of 
P. vivax isolates from PNG (Additional file 3: Table S2). 
Only two SNPs from the previously developed bar-
code [33] met the inclusion criteria (Additional file  3: 
Table S2). To assess amplification bias that may occur due 
to preliminary amplification steps such as whole genome 
amplification (WGA), amplicon deep sequencing was 
performed for six samples with, and without, WGA for 
a test set of 20 SNP markers (2 × 10-plex PCRs). A total 
of 17 of 20 (85%) SNPs were successfully genotyped in 
these samples. There were no significant amplification 
differences before and after WGA (p = 0.13 for MOI = 1 
samples and p = 0.92 for MOI = 2 (Mann–Whitney U 
test)) (Additional file 2: Figure S4a). There were also no 
observed discrepancies in the genotype calls between 
the WGA and non-WGA samples. There was an average 
read depth of 133 (range = 50–567) for test run samples 
(Additional file 2: Figure S4b). This read depth of approx-
imately 133X is suitable to call variants however deeper 
sequencing is required to do downstream population 
genetic analysis with high confidence.

Data summary and validation of the barcode
A total of 94 low complexity (MOI ≤ 2) P. vivax samples 
from a cross-sectional survey conducted in four catch-
ment areas of PNG (Madang Province: Mugil, Malala 
and Utu; East Sepik Province: Ilaita area) (Fig.  1) were 
then genotyped for all 178 SNPs using the parallel tar-
geted amplicon sequencing assay. These samples had 
already been genotyped with ten microsatellite mark-
ers in a previous study [49]. A total of 28,934,460 reads 
were generated from the MiSeq Illumina run with a 
variable sequencing coverage across samples per locus 
(median = 563, range 56 –7586). Of the 178 SNPs, five 
were not amplified at all (no reads detected) and 34 had 
high missingness (no reads for > 40% of samples). Of 
the 94 genotyped samples, 83 were successfully geno-
typed for the remaining 146 SNP markers (Additional 
file  2: Figure S4c) indicating the genotyping success 
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rate amongst samples was 88.2% (83/94) with an 82.1% 
(146/178) marker positivity rate. There were no identical 
genotypes, suggesting that the barcode is a unique identi-
fier for P. vivax isolates from PNG. The SNPs generally 
had moderate minor allele frequencies (MAF) with 98% 
of SNP loci showing greater than 10% MAF (Additional 
file 2: Figure S5a). There were no private SNPs (unique to 
any one population). Published genotyping data for MOI 
[72] and microsatellite data for these P. vivax isolates [49] 
was then used to compare the population genetic metrics 
with the new SNP barcode data.

The SNP barcode detects more multiple clone infections 
than classical genotyping for MOI
Despite previous ‘classical’ genotyping for MOI using 
msp1F3 and ms16 indicating the majority of samples 
were single clone infections (i.e. one allele at both mark-
ers [48]), all 83 samples showed at least one heterozygous 
call (two alleles found amongst the reads at a particular 
SNP locus), which is evidence of polyclonality (genotyp-
ing error is filtered out by the variant calling algorithm). 
The Real McCOIL analysis indicated that out of the 83 
successfully genotyped P. vivax samples, 69 samples 

(83.2%) have at least two clones and 24 samples (16.8%) 
were confirmed monoclonal infections. For the popu-
lation genetic analyses, the dominant allele was used 
to reconstruct dominant haplotypes (Additional file  4: 
Table S3).

The SNP barcode captures variable genetic diversity 
amongst parasite populations
Variable levels of within-population genetic diversity 
were observed in the four parasite populations with 
an average nucleotide diversity (π) of 0.33 per SNP site 
(range = 0.24–0.45) (Fig.  2a). Nucleotide diversity was 
lowest in the inland Utu population and highest in the 
coastal Malala parasite population. The genetic diversity 
(Heterozygosity, He) of the same parasite populations 
using the microsatellite panel showed uniformly high 
genetic diversity among populations (mean He = 0.82, 
range = 0.78–0.85) (Fig. 2b). Note that the different diver-
sity measures necessary for these different markers may 
also impact this result. Therefore, we used the alterna-
tive metric 1-PS (1-pairwise allele sharing) (Fig. 2c, d) to 
measure genetic diversity within each parasite popula-
tion for both markers. Genetic diversity by both marker 
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Fig. 2 Genetic diversity of P. vivax populations from the north coast of Papua New Guinea. Genetic diversity was measured for four catchment areas 
on the north coast of Papua New Guinea using a SNP nucleotide diversity (π), which was measured by calculating the average number of pairwise 
differences at assayed SNPs between all members of sample using DnaSP Version 5.0 [65]; b Microsatellite Expected Heterozygosity (He = [n/(n‑1)] 
[(1‑ Σpi

2)] where n is the number of isolates sampled and  pi is the allele frequency at the ith loci) using as FSTAT  software version 2.9.4 [67]; c SNP 
barcode diversity and d microsatellite haplotype diversity. For c and d, box plots show the results from another genetic diversity metric, 1‑mean 
pairwise allele sharing. The variation in the box and median distribution indicates variability in genotype relatedness amongst pairs of genotypes. 
The analysis was done using genetic distance matrix for 1‑PS generated by the ‘dist. gene’ command in “Ape” R package
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panels was significantly different among the four parasite 
populations (p value < 0.001, Kruskal–Wallis test). In gen-
eral, microsatellite genotypes had higher genetic diversity 
compared to SNP genotypes. However, microsatellites 
show a wider range of values and more closely related 
genotype pairs (outliers 1-Ps < 0.4) (Fig. 2d).

The SNP barcode detects parasite population divergence 
that is associated with geographic distance
Bayesian cluster analysis of SNP genotypes using STRU 
CTU RE software [66] identified that three genetic clus-
ters (K = 3) provided the best fit for the SNP data and two 
genetic clusters (K = 2) for microsatellites (Additional 
file 2: Figure S6).

Less population structure and genotype clustering 
according to their geographic origin was observed by 
microsatellite markers compared to SNPs (Fig.  3). Dis-
criminant Analysis of Principal Components (DAPC) 
detected higher levels of genotype assignment to differ-
ent geographic origins and higher differentiation between 
distant compared to neighbouring populations for SNPs 
(Fig.  4a, top) than microsatellite markers (Fig.  4b, top). 
Microsatellites revealed limited differentiation of distant 
parasite populations such as East Sepik and Utu (Fig. 4b, 
top).

To further explore the patterns of gene flow in differ-
ent geographic areas we measured genetic differentiation 
(FST) and observed very low to moderate genetic differ-
entiation (FST = 0.02–0.12) between parasite populations 
using either marker panel (Table  1). However, values 
were higher for SNPs and there was greater differentia-
tion of distant populations e.g. East Sepik vs Utu for the 
SNP marker data.

For SNP barcodes, the DAPC individual density plot 
also supports the FST result, where distant parasite popu-
lations were more distinctly clustered (Fig.  4a, bottom) 
than the nearby populations. However, the microsatellite 
marker data showed an unusual clustering of distant par-
asite populations together (East Sepik and Utu) (Fig. 4b, 
bottom). To assess whether the geographic distance 

between geographic clusters affects gene flow, a Mantel 
correlation test was conducted. The analysis showed a 
significant association between genetic distance and geo-
graphic distance in km for SNP markers (Fig. 5a), but not 
for microsatellite markers (Fig. 5b).

No association between microsatellite and SNP haplotype 
relatedness
To further explore clustering patterns and investigate the 
relatedness of individual SNP haplotypes, phylogenetic 
analysis was conducted using Neighbour Joining trees. 
This identified clusters of closely related isolates from 
the same province and village with moderate population 
structure and geographic clustering of genotypes (Fig. 6). 
More clustering of genotypes was found in the East Sepik 
population compared to the three parasite populations 
from Madang (Malala, Mugil and Utu for the SNP mark-
ers) (Fig.  6a). Overall, phylogenetic analysis supported 
the STRU CTU RE and DAPC results, with higher para-
site clustering between East Sepik versus Madang by SNP 
barcode compared to microsatellites.

Unless there is overall high relatedness among genotypes, 
it is difficult to identify population structure using phylo-
genetic analysis due to high recombination between dis-
tinct clones. To further infer relatedness between parasites 
within and between populations, a simple pairwise allele-
sharing (PS) measure was used. Relatedness analysis using 
the SNP markers (Additional file 2: Figure S6) showed that 
the majority of genotypes share alleles at 50–70% of mark-
ers suggesting parasites are unrelated [73]. Only a few 
genotypes showed high relatedness, with 70–90% of alleles 
shared (Additional file 2: Figure S7) within the population, 
but no identical genotypes were detected. The allele shar-
ing analysis of the same P. vivax isolates using ten micro-
satellite markers was consistent with SNP data where the 
majority of microsatellite genotypes are unique and only a 
few genotypes shared a high proportion of alleles.

Concordance analysis of allele sharing between geno-
types using the SNP barcode and microsatellite haplotypes 
showed no statistically significant association (r = 0.032, 

East Sepik      Malala Mugil          UtuEast Sepik      Malala Mugil          Utu

a   SNP barcode b   Microsatellites 

Fig. 3 Bayesian cluster analysis of P. vivax genotypes from the north coast of Papua New Guinea. Cluster analysis was done using a SNP barcodes or 
b microsatellite haplotypes for 86 P. vivax isolates from four geographic regions of Papua New Guinea using STRU CTU RE software version 2.3.4 [68]. 
STRU CTU RE bar plots representing Individual ancestry coefficients are shown for K = 3, each vertical bar represents an individual haplotype and the 
membership coefficient (Q) within each of the genetic populations, as defined by the different colours
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p-value = 0.56) (Additional file  2: Figure S8). Thus, high 
outcrossing in the PNG populations due to high transmis-
sion removes any association between these markers.

Discussion
Genomic surveillance of malaria parasite populations is 
a useful tool to assess changing transmission patterns, 
identify imported cases and track the spread of infections 
[23, 74, 75]. Reliable, cheap and high-resolution genotyp-
ing assays are therefore needed to support malaria con-
trol programmes. SNP barcodes have been developed 
to study the complexity of infection [76, 77], parasite 
population structure and the origins of outbreaks [15, 
33, 34, 78]. However, ascertainment bias can reduce the 

sensitivity of detecting distinct clones and population 
genetic analyses to detect and track discrete parasite 
populations. SNP barcodes need to be validated and/or 
tailored to specific geographic areas to reflect the SNP 
diversity in local parasite populations [23]. Here, the 
development of a SNP barcode comprising 178 locally-
validated biallelic SNP loci is described. This barcode was 
tailored specifically to PNG, one of the world’s hotspots 
for P. vivax malaria infection. Genetic diversity and pop-
ulation structure amongst four distinct catchment areas 
on the north coast of PNG was compared for the SNP 
barcode and panel of ten polyallelic microsatellite mark-
ers that many groups have previously employed for popu-
lation genetic analyses [24–26]. The results demonstrate 
the greater sensitivity of these large biallelic SNP bar-
codes for malaria genomic epidemiology and potential to 
provide useful data to guide malaria control strategies.

The SNP barcode detected a higher number of clones 
compared to two highly polymorphic microsatellite 
markers ms16 and msp1F3, which have been used previ-
ously to measure multiplicity of infection [79, 80]. This 
indicates that the SNP barcode has higher resolution to 
identify multiple infections, most likely due to the much 
larger number of loci genotyped. However, there is an 
upper limit to clone detection due to the biallelic nature 
of the SNP loci. It also suggests that the complexity of 
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Fig. 4 Discriminant analysis of principal component (DAPC) of P. vivax isolates from the north coast of Papua New Guinea. DAPC was used to 
identify clustering amongst isolates from the four catchment areas for a SNP barcodes and b microsatellite haplotypes. On the top of the figure 
scatterplots of DAPC (Bottom) are shown. Clusters are defined by ellipses and indicate the variance within the clusters whereas dots indicate the 
positions of individual parasite genotypes within the cluster. Eigenvalues represent the amount of genetic variation captured by the discriminant 
factors plotted as the x‑ and y‑axis. On the bottom, individual density plots are shown for the first discriminant function. The data was analysed 
using DAPC function in “Adegenet” R package [69]

Table 1 Pairwise population differentiation among  P. 
vivax populations in  four different geographic clusters 
in North Coast of Papua New Guinea

Lower left = SNP  FST, Upper right = Microsatellite  FST

Population East Sepik Malala Mugil Utu

East Sepik – 0.025 0.033 0.12

Malala 0.09 – 0.06667 0.045

Mugil 0.086 0.021 – 0.0833

Utu 0.121 0.04033 0.033 –
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P. vivax infections (based on a small number of loci) is 
currently underappreciated, and that the barcode will 
be more useful than small numbers of microsatellites in 
very low endemic settings to distinguish between very 
closely related parasites. Samples were pre-genotyped 
and selected for monoclonal infection, which limits the 
direct comparison of the ability of these two microsatel-
lites and SNP barcode to identify polyclonal infections. 
Further evaluation of the barcode by genotyping a large 

set of randomly selected field samples is needed to fully 
assess its utility for estimating complexity of infection.

Population genetic analyses using the SNP barcode 
elucidated genetic diversity, relatedness, population 
structure and connectivity of circulating parasite popula-
tions at higher resolution relative to the larger panel of 
ten microsatellite markers. More variable genetic diver-
sity among populations is captured by the SNP bar-
code than microsatellite markers. Previous work with 
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microsatellite markers in eight locations of PNG revealed 
geographic population structure between the mainland, 
islands and highland areas [9]. However, microsatellites 
were unable to differentiate populations at a finer spa-
tial scale between the mainland north coast provinces of 
East Sepik and Madang [46, 47, 49]. Indeed, microsatel-
lite performance has not previously been compared to 
SNPs in terms of their ability to differentiate between P. 
vivax populations. The results suggest that large numbers 
of SNPs have higher resolution to detect differences in 
transmission dynamics between populations. Moreover, 
SNP barcodes detected substantial geographic popula-
tion structure between the four catchment areas with 
clustering of haplotypes according to their geographic 
origin, whereas microsatellites did not achieve this. 
There was also a significant association between genetic 
distance and geographic distance for SNPs but not for 
microsatellite markers suggesting that SNPs can accu-
rately pinpoint geographic origins of infections, whereas 
microsatellites cannot. This also implies that large num-
bers of SNP markers can capture population connectivity 
at fine spatial scales in high transmission areas. The ten 
microsatellite markers identify some population struc-
ture, but it does not fit the expected isolation by distance 
pattern expected of this contiguous endemic area. The 
findings are consistent with another study on the malaria 
vector  Anopheles darlingi where SNP markers showed 
higher discrimination among genetic clusters with more 
than 4–35 fold higher FST estimates than microsatel-
lite markers [81]. Other studies in different fish species 
have also shown that biallelic SNP markers have greater 
accuracy and finer population structure than microsatel-
lite markers [82, 83]. The SNP barcode is more sensitive 
because markers are more densely covering the chromo-
somes than the microsatellite panel with less than one 
marker per chromosome, and thus will more accurately 
detect relatedness among parasites through inherited 
segments of the genome, using Identity by Descent (IBD) 
approaches [84, 85]. Also, in high transmission areas, 
genetic differentiation (i.e. the difference between the 
diversity of the subpopulations compared to the metap-
opulation [86]) is typically estimated as being low when 
using polyallelic microsatellite markers because their 
diversity is at a maximum, making it difficult to identify 
low levels of population structure. Other measures such 
as Jost’s D have been used to overcome these limitations 
of microsatellites [47]. While our results suggest that the 
currently used ten microsatellite panel may have lower 
resolution to identify distinct genotypes and correctly 
identify related parasites, larger microsatellite panels will 
undoubtedly be more sensitive and may also deconvolute 
complex mixtures of clones within an infection. Selection 
of informative markers is important to track gene flow 

and quantify parasite connectivity using IBD measures 
[87]. SNP barcoding using an adequate number and den-
sity of SNPs will be important for the characterization of 
these population genetic signals, and to identify patterns 
of parasite migration [23, 32, 87]. The generation of addi-
tional WGS data for the surveyed populations would help 
to verify the performance of different marker panels.

Related isolates have a higher probability of identical 
alleles at a given locus than unrelated genotypes [73, 74]. 
In this study, a significant difference in pairwise allele 
sharing was not detected either within and between 
populations using SNP or microsatellite markers. The 
SNP barcode identified a narrow range of allele shar-
ing with > 90% genotypes with alleles shared amongst 
50–90% of the markers. This finding is consistent with 
the previous study by Nkhoma et  al. [73] where a SNP 
barcode comprising 96 SNPs detected high allele shar-
ing in diverse and unrelated parasites (PS of up to 0.74 
observed in two unrelated parasites (0% IBD)). Thus, only 
genotypes with PS values greater than 0.8 (distributed at 
tail end of the histogram) for either SNP or microsatellite 
markers are truly related. This finding indicates that sim-
ple pairwise allele sharing (IBS) values do not accurately 
represent the actual percentage of the parasite genome 
that is IBD or that this measure is not as sensitive to 
measure the actual genotype relatedness. IBD values 
were not compared between the different markers in this 
study since the ten microsatellite markers will have lim-
ited sensitivity to estimate the proportion of the genome 
that is IBD. Studies using large SNP barcodes (> 100 loci) 
such as that described here, are recommended in order to 
apply IBD measures to calculate parasite relatedness and 
between population connectivity [87].

A minor allele frequency criteria was applied to select 
informative SNPs (> 0.1 MAF) to capture diverse para-
sites in hyperendemic regions of PNG. It is recom-
mended to use these validated (n = 146) bi-allelic SNPs 
for future genotyping of P. vivax parasites if informative 
for the studied parasite population. A similar approach 
has been used to select a ‘universal’ 42 SNP barcode from 
hundreds of thousands of SNPs from genomic sequences 
of globally diverse parasite isolates [33]. A recent study 
focused on Plasmodium falciparum revealed that bar-
codes of 93 or even just 24 SNP markers are adequate in 
a low transmission area to capture parasite connectivity, 
allow stratification of closely related parasite populations 
and identify source and sink populations—with a high 
sample size required for a small number of markers and 
vice versa [85]. Before applying the developed markers 
to genotype parasite isolates from a given population, it 
is recommended to validate markers by evaluating allele 
frequencies within a subset of samples. Moreover, SNP 
barcodes need to be continually evaluated and validated 
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against local WGS data to ensure they provide similar 
insights into parasite population genetics.

In conclusion, the locally-validated SNP barcoding 
assay showed higher resolution to measure variations in 
P. vivax diversity and population structure at local (sub-
provincial) scale compared to the currently used panel 
of ten microsatellite markers. As countries approach 
malaria elimination, SNP barcoding will help to identify 
transmission zones and their dynamics and routes of 
parasite migration, and hence how to contain infections 
and to monitor whether control efforts are having an 
impact. The findings from this approach in combination 
with epidemiological data are essential to policy makers. 
The developed amplicon sequencing assay requires only 
a small amount of starting DNA (2 mL) and can be done 
relatively easily using available Next Generation Sequenc-
ing technology platforms at low cost (less than $18USD 
per isolate). This technology allows the “plug and play” 
incorporation of other markers such as SNPs informa-
tive for a given country/region or those associated with 
drug resistance that could help to concurrently genotype 
circulating parasites and resistance genes to give timely 
information for malaria control strategies. Overall, the 
findings suggest that SNPs may be better suited than the 
currently used microsatellite markers due to their higher 
resolution. SNP barcodes would also be more suitable in 
a control program setting, given the availability of cost-
effective and robust high-throughput sequencing and the 
relative lack of technical issues.
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org/10.1186/s1293 6‑020‑03440 ‑0.

Additional file 1: Table S1. Details of 40 P. vivax isolates from PNG 
sequenced and used for SNP candidate selection. 

Additional file 2: Figure S1. Overview of steps used to select informative 
SNPs from P. vivax whole genome sequence data. Figure S2. Overview of 
amplicon sequencing approach for multiple samples (96) to amplify all 
target SNP loci (178) in single sequencing run. Genomic loci were ampli‑
fied using standard PCR (PCR#1) using locus specific primer with universal 
overhang adaptors (a). Using purified primary PCR product as a template 
an additional PCR, index PCR (PCR#2) (b) was performed to attach a mul‑
tiplex identifier (MID) tag which is unique to each sample and attaches to 
universal overhang sequence. Unique sequence of MID for each sample 
enables pooling of secondary PCR products (96 samples in this protocol) 
for library preparation (c). Then high throughput “multiplexed” sequencing 
of the combined amplicons from all samples (96) in a single MiSeq run to 
produce require millions of paired‑end reads (2x300bp) (d). e Data was 
analysed using standard bioinformatics tools and mapped reads were 
visualized using Integrative Genomics Viewer. The graph shows a large 
number of reads covering the target SNP locus. This result shows that all 
reads possess the alternative allele (green) at the SNP site. This high fre‑
quency of SNP calls amongst reads gives high confidence to differentiate 
true SNPs (indicated as SNPS at target locus) from sequencing artefacts 
(rare SNPs shown left and right side of target locus). Figure S3. Overview 
of bioinformatic data analysis pipeline. Data processing sequence read 
consisting of quality checking of raw sequence reads, primers and adaptor 

trimming, mapping reads to reference sequence, SNP calling and filtering, 
and population genetic and statistical analyses. Figure S4. Quality control 
of the Plasmodium vivax barcoding assay. a Assessment of amplification 
bias and SNP polymorphism among genotyped samples. Comparison of 
number of successfully amplified loci before and after rWGA of samples. 
There was no statistically significant difference in number of loci suc‑
cessfully genotyped before and after WGA, and between monoclonal 
and polyclonal samples. b Read coverage for all 20 SNP markers per 
sequenced sample. The graph shows that read count is different for dif‑
ferent samples with high read count in samples with MOI = 2. Read count 
variation between amplified WGA) and unamplified samples (S) were not 
significant. c PCR and SNP genotyping success rate. From a total of 220 
SNPs, 42 were negative and were not amplified in the primary multiplex 
PCR, and 32 failed during genotyping (either no reads detected or did not 
meet the quality filtering threshold). The remaining 146 were used as “SNP 
barcode” for downstream population genetic analysis (Additional file 3: 
Table S2). Figure S5. Distribution of the Minor allele frequency (MAF) of 
SNP barcodes in P. vivax parasite population in north coast PNG. Figure 
S6. Optimal number of clusters for each marker based Evanno’s method 
[42]. For SNP markers the method identified three genetic clusters (K = 3) 
and two genetic clusters (K = 2) for Microsatellites. However, for Microsat‑
ellites K = 2 is a common artifact of the hierarchical clustering algorithm 
when two very distinct populations are present, so higher K must be 
observed to identify possible sub‑population structure. Figure S7. Pair‑
wise allele sharing of P. vivax genotypes within and between population. 
a SNP genotype frequency distribution of pairwise allele‑sharing (PS). b 
Microsatellite genotype frequency distribution of pairwise allele‑sharing 
(PS). Black bars indicate within population and grey bars indicate between 
populations. There was no significant difference in allele sharing within 
and between parasite populations either SNP barcode or microsatellite 
markers in north coast of PNG. Figure S8. Kendall’s Tau concordance 
analysis of genotype allele sharing by SNP and Microsatellite. Each boxplot 
indicates the proportion of shared alleles between genotypes by SNP. The 
analysis revealed no significant correlation between the SNP and micros‑
atellite pairwise allele sharing values. 

Additional file 3: Table S2. Details of 178 SNPs, SNPs included in final 
panel (n = 146), primers sequences and their multiplex setting. 

Additional file 4: Table S3. The 83 P. vivax haplotypes used for the final 
data analysis.
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