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Abstract

Background: There is today no gold standard method to accurately define the time passed since infection at HIV
diagnosis. Infection timing and incidence measurement is however essential to better monitor the dynamics of
local epidemics and the effect of prevention initiatives.

Methods: Three methods for infection timing were evaluated using 237 serial samples from documented
seroconversions and 566 cross sectional samples from newly diagnosed patients: identification of antibodies against the
HIV p31 protein in INNO-LIA, SediaTM BED CEIA and SediaTM LAg-Avidity EIA. A multi-assay decision tree for infection
timing was developed.

Results: Clear differences in recency window between BED CEIA, LAg-Avidity EIA and p31 antibody presence were
observed with a switch from recent to long term infection a median of 169.5, 108.0 and 64.5 days after collection of the
pre-seroconversion sample respectively. BED showed high reliability for identification of long term infections while LAg-
Avidity is highly accurate for identification of recent infections. Using BED as initial assay to identify the long term
infections and LAg-Avidity as a confirmatory assay for those classified as recent infection by BED, explores the strengths of
both while reduces the workload. The short recency window of p31 antibodies allows to discriminate very early from
early infections based on this marker. BED recent infection results not confirmed by LAg-Avidity are considered to reflect
a period more distant from the infection time. False recency predictions in this group can be minimized by elimination of
patients with a CD4 count of less than 100 cells/mm3 or without no p31 antibodies. For 566 cross sectional sample the
outcome of the decision tree confirmed the infection timing based on the results of all 3 markers but reduced the overall
cost from 13.2 USD to 5.2 USD per sample.

Conclusions: A step-wise multi assay decision tree allows accurate timing of the HIV infection at diagnosis at affordable
effort and cost and can be an important new tool in studies analyzing the dynamics of local epidemics or the effects of
prevention strategies.
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Background
Measurement of HIV incidence is an essential instru-
ment for reliable monitoring of the effect of preventive
interventions like generalized treatment, early treatment,
pre-exposure prophylaxis or vaccines. HIV surveillance
in Western-European countries is mostly based on case
reporting of new cases but defining the infection preva-
lence is less well suited for tracking trends in HIV trans-
mission as it is prone to biases resulting from shifts in
testing rates or changes in populations at risk. UNAIDS
provides guidelines for incidence measurement [1] and
many countries have programs for nationwide incidence
measurement. Despite all these efforts, a gold standard
method for the timing of an HIV infection at diagnosis
is still missing. The only reliable way to classify an
infection as recent is the demonstration of a seroconver-
sion, but the seroconversion period is short and HIV
diagnosis often delayed. Different approaches for HIV
incidence measurement have been proposed, using
either information from routine diagnostic assays [2],
specialized assays [3–5] or mathematical models [6].
While all these models may be useful for incidence
measurement in large populations, their value for the
estimation of time of infection in individual patients is
limited. Also, the multitude of approaches used for
incidence measurement today hampers comparison of
incidence rates between studies and countries.
Several assays have been developed that rely on

characteristics of the humoral immune response after
infection to estimate recency of infection, such as the in-
crease in anti-HIV IgG antibody concentration relative
to total IgG concentration and the increase in anti-HIV
antibody affinity. Ideally, these assays should have a false
recency rate of less than 2% [7]. The struggle to achieve
this goal hinders routine implementation of these assays
[7–11] and oblige the exclusion of patients known to
have higher risk for false recent classifications, to im-
prove accuracy. Alternatively, incidence measures can be
optimized by the use of algorithms that rely on multiple
parameters and as such correct for the inaccuracies of
individual assays.
Systematic incidence analysis also has logistic and

financial implications especially when multiple assays
are involved. Serial testing approaches or decision trees
maintain accuracy but control costs by reducing the
number of samples for extensive testing [12]. They are
an interesting solution but need to be carefully designed
to avoid loss of information. The aim of this study was
to explore different testing schemes for HIV incidence
measurement and surveillance in Belgium. This country
has a relatively high HIV prevalence, with a stable 90 to
100 new diagnoses per million inhabitants per year since
2003. Men having sex with men account for 46% of all
new diagnoses, heterosexual transmission for 50%.

Sub-Saharan African migrants represent 45% of the new
diagnoses resulting from heterosexual contacts [13]. The
heterogeneity in origin of infected individuals is reflected
in a multitude of HIV subtypes and recombinants being
represented. Confirmation of reactive HIV screening is
centralized in 7 reference laboratories who report new
diagnoses encoded to the Institute of Public Health. The
reference laboratories are also in charge of the labora-
tory monitoring of HIV infected patients and as such
have access to viral load and CD4 count data for all
patients entering care.
The following markers of infection time were evalu-

ated: absence of antibodies against the HIV-1 p31 anti-
gen as visualized on the immunoblot confirmation test
(INNO-LIA HIV I/II Score, Fujirebio, Ghent, Belgium),
low HIV IgG concentration as defined by Sedia™ BED
HIV-1 Incidence Enzyme Immuno Assay (BED-CEIA;
Sedia Biosciences Corporation, Portland, Oregon, USA)
and low HIV antibody avidity as defined by Sedia™
HIV-1 Limiting Antigen Avidity Enzyme Immuno Assay
(LAg-Avidity EIA; Sedia Biosciences Corporation).
Strengths and weaknesses of these markers alone and in
combination were defined on serial samples from sero-
converters, on samples from patients with particular
conditions and on cross-sectional samples from the tar-
get population. Based on the obtained results a decision
tree for future infection timing was developed.

Methods
Study population
Table 1 presents an overview of patient characteristics
for the different sample series.
The longitudinal sample series comprised 237 serial

plasma samples from 42 patients with a documented
seroconversion. The mean number of samples tested per
patient was 7 (range 4 to 15) and the mean total follow-
up period was 696 days (range 67 to 2364 days). The
first sample collected from each patient (day 0) showed
a reactive p24 antigen test but no detectable antibodies
in the INNO-LIA HIV I/II Score.
The cross-sectional sample series consisted of single

samples collected at diagnosis or a maximum of 6 weeks
thereafter from 566 individuals diagnosed with HIV-1 in
Belgium between 2012 and 2014. All patients were
therapy naïve and had a detectable viral load (>20 c/ml)
at the time of sample collection. The HIV subtype was
available for 511 individuals, the majority (53.0%) were
infected with a subtype B virus. The other subtypes and
circulating recombinant forms (CRF) represented were
CRF02_AG (n = 74), F (n = 63), A (n = 33), C (n = 26),
CRF01_AE (n = 17), G (n = 11), other CRF (n = 9) and D
(n = 7).
The sample series of patients with particular condi-

tions known to be associated with a higher likelihood for
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false recency predictions contained single samples from
12 patients on antiretroviral therapy (ART) (treated for
at least 6 months, viral load <20 copies/ml (c/ml)), from
11 elite controllers (infected for at least 4 years, therapy
naïve, viral load <20 c/ml), from 6 slow progressors
(infected for at least 4 years, therapy naïve, viral load be-
tween 20 and 1000 c/ml) and from 19 advanced infections
(infected more than 5 years, viral load >30,000 c/ml, CD4
count <100 cells/mm3).
All samples were selected from the serum and plasma

depository of the 7 Belgian Aids Reference Laboratories.
The study was approved by the ethical committee of the
participating institutions with Ghent University Hospital
as the leading center (study number 2014/0717).

INNO-LIA and p31 antibodies
The INNO-LIA HIV I/II Score assay (Fujirebio) was
performed according to the manufacturers’ instructions.
Using the band intensity of the three internal standards,
antibody reaction to the individual HIV antigens was
scored as -, ±, 1+, 2+ or 3+ either visually or by the
automated LIRAS reading system (Fujirebio). Antibodies
against the integrase protein p31 were considered absent
when a score of – or ± was given and present when the
score was 1+ or more. For the longitudinal samples,
INNO-LIA was performed on serial samples until pres-
ence of p31 antibodies was documented. For the samples
from selected populations an INNO-LIA was performed
in the context of this study, for the cross-sectional sam-
ples from newly diagnosed patients the results of the
diagnostic assay were used.

LAg-avidity EIA and BED CEIA
Sedia™ BED CEIA (Sedia Biosciences Corporation, Portland,
Oregon, USA) and Sedia™ HIV-1 LAg-Avidity EIA (Sedia
Biosciences Corporation), were performed according to the
manufacturers’ instructions. Results are normalized using
an internal calibrator and reported as normalized optical
densities (OD-n). Attribution of long term infections was
based on a single measurement and OD-n > 1.2 for BED
CEIA or >2.0 for LAg-Avidity EIA. For samples with

OD-n ≤ these respective cut-offs, retesting in triplicate was
performed as recommended and discrimination between
recent and long term infection was based on median
OD-n > 0.8 for BED CEIA and >1.5 for LAg-Avidity EIA.

Subtype assignment
Sequences of the HIV-1 protease and reverse transcript-
ase genes gathered for the purpose of baseline resistance
testing were used for subtype assignment using Rega v3,
http://dbpartners.stanford.edu:8080/RegaSubtyping/stan-
ford-hiv/typingtool/ (Rega Institute for Medical Re-
search, Leuven, Belgium) [14] and Comet, http://
comet.retrovirology.lu/ (Laboratory of Retrovirology,
Luxembourg Institute of Health, Luxembourg) [15]. The
subtype was only allocated in case of concordant out-
come of both tools and considered as undefined (UD) in
case of discordancy. The sequences were assigned Gen-
bank accession numbers MF754381 to MF754919.

Statistical analysis
Rosner’s Extreme Studentized Deviate (ESD) test with a
significance level set at 0.05 was used to identify outliers
(https://www.medcalc.org/manual/outliers.php; last accessed
on November, 29th 2017). Fisher’s exact test was used to
compare the representation of patients with low CD4 count
amongst the congruent and incongruent predictions.

Results
Serial samples from seroconverters
For the longitudinal study, the day of collection of the
first (pre-seroconversion) sample was considered as day
0. Antibodies against the p31 antigen were absent in
28.7% of the samples and were first detected in a sample
collected at day 32. The median time point between the
last sample without p31 antibodies and the first sample
with p31 antibodies was day 64.5 (IQR 33.5 – 89.0)
(Fig. 1a). With the LAg-Avidity EIA, 38.8% of the serial
samples were classified as recent and 61.2% as long term
(Fig. 1b). The samples from recent infections were col-
lected between day 0 and 406. The median time point
between recent and long term classifications was day

Table 1 Characteristics of patients in the different sample series

Sample series Patients
(n)

Samples
(n)

Samples/
patient

Male
(%)

Age at diagnosis
mean (IQR)

Subtype
B (%)

CD4 count cells/mm3

mean (IQR)
Log viral load
mean (IQR)

Longitudinal 42 237 4 to 15 85.7 38 (33 - 44) 70.7 612 (461 - 709)a 5.18 (4.58 - 5.75)a

Special populations ART treated 12 12 1 50.0 45 (38 - 55) NA 694 (429 - 998) <1.30

Elite controllers 11 11 1 27.3 49 (38 - 57) NA 933 (769 - 1081) <1.30

Slow progressors 6 6 1 50.0 41 (36 - 50) NA 599 (374 - 883) 2.45 (2.23 - 2.72)

Advanced infection 19 19 1 73.7 39 (34 - 45) 58.8 42 (14 - 61) 5.40 (4.98 - 5.72)

Cross-sectional 566 566 1 78.3 39 (30 - 47) 53.0 443 (264 - 566) 4.71 (4.26 - 5.22)

Abbreviations: ART combination antiretroviral therapy, IQR interquartile range, n number, NA not available
aUsing only the result of the first sample collected from each patient
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108.0 (IQR 89.5–157.5) (Fig. 1b). With the BED CEIA,
50.0% of the samples were classified as recent and 50.0%
as long term (one sample was not analyzed with BED
CEIA). The recent infections were collected between day
0 and 1053. The median time point between recent and
long term classification was day 169.5 (IQR 108.0 –
234.5) (Fig. 1c).
Figure 2a shows the evolution of assay results over

time in a representative patient (patient PO). Rosner’s
ESD test identified 7 outliers for p31 antibodies, 3 for
LAg-Avidity EIA and 2 for BED CEIA. Absence of p31
antibodies was noticed in samples collected at day 89,
122, 167, 267, 386, 524 and 599 reflecting delayed p31
antibody production in the 3 patients from whom they
were drawn: patients 79 (Fig. 2b), patient 83 (Fig. 2c)
and patient 09 (Fig. 2d). The LAg-Avidity EIA falsely
classified a sample collected at day 0 as long term infec-
tion: patient GU Fig. 2e) and 2 samples collected from
patient 83 at day 214 and 406 as recent infection
(Fig. 2c). BED CEIA falsely classified a sample from day
406 (patient 83, Fig. 2c) and a sample from day 1053
(patient 11, Fig. 2f ) as recent infection.
The 5 patients with outlier results were all infected

with a subtype B virus. Three of the 4 patients with an
extended recency window for either both EIAs and p31
antibodies (patient 83, Fig. 2d), BED CEIA alone (patient
11, Fig. 2e) or p31 antibodies alone (patient 79, Fig. 2f )
also showed a pronounced viral control after acute

infection in the absence of cART. The overall sensitivity
and specificity of the two EIA assays when applying
different cut-offs for duration of infection is summarized
in Table 2.
Of note, 2 patients who initiated cART during the

acute phase of infection showed an extended recency
windows for all 3 markers (analyzed outside of study,
results not shown).

Elite controllers, slow progressors, ART treated and late
stage disease patients
High rates of false recent predictions were observed in
patients on ART and in elite controllers (Table 3), with
BED CEIA suffering the most from this type of
misclassification, followed by LAg-Avidity EIA and p31
antibodies. Advanced disease and low CD4 count were
also associated with a high number of false recent
predictions in BED CEIA and p31 antibody assay but
not in LAg-Avidity EIA (Table 3). No false recent classi-
fications were noticed for the slow progressors.

Newly diagnosed individuals
An overview of the results for the 566 cross-sectional
samples from newly diagnosed patients is shown in
Table 4. Concordant recent infection classifications for 3
markers were obtained for 105 (18.9%) patients and
concordant long term infection classifications for 313
(55.3%), resulting in an overall concordance of 73.9%.

Fig. 1 Results of p31 antibody presence (a), LAg-Avidity EIA (b), BED CEIA (c) and the decision tree (c) in seroconverters. Scatterplots represent
the p31 intensity on INNO-LIA strips (a), the normalized optical density for the LAg-Avidity EIA (b), the normalized optical density for BED CEIA (c) and
the decision tree classification (d) for 237 samples from 42 seroconverters. The time of the first sample, collected pre-seroconversion, is considered as
day 0. Blue diamonds represent classification as recent infection; red diamonds represent classification as long term infection
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When comparing the results of the two EIAs, the
concordance was 85.3%, with 28.4% of the samples
classified as recent infections and 56.9% as long term
infections. Discordances between the EIA results were
observed for 83 patients (14.7%), 82 classified as
recent by BED and long term by LAg-Avidity and 1
classified as recent by LAg-Avidity and long term by
BED.

For subsequent analysis, results that followed the expec-
tations considering the differences in recency window
between the assays were called congruent and results that
could not be explained by the recency window were called
incongruent (Table 4). The total number of incongruent
predictions was low (n = 18, 3.2%) with the highest num-
ber resulting from false recent predictions, 17 for p31
antibodies, 8 for BED CEIA and 1 for LAg-Avidity EIA.

Fig. 2 Assay results in function of time since collection of the first sample for 6 demonstrative patients. a represents the evolution of the markers
in a representative patient (PO) and the b to f represent the evolution in all patients with at least one outlier result. Black stars: absence of p31
antibodies; black triangles: presence of p31 antibodies. Blue circles: BED CEIA results, open circles: recent infection, solid circles: long term
infection. Red diamonds: LAg-Avidity EIA results; open diamonds: recent infection, solid diamonds: long term infection. Black line: evolution of the
viral load. Squares on top of the graphs represent the results obtained when following the decision tree, yellow: very early infection, orange: early
infection, green: recent infection, purple: long term infection and brown: advanced infection
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To further identify potential reasons for incongru-
ences, viral load and subtype distribution were compared
between the classification groups. The results showed
that incongruences were observed significantly more fre-
quently in patients with a low CD4 count (<200 cells/
mm3; p < 0.01) but influence of viral load or subtype was
not significant. Of note, 7 of the 9 patients classified as
long term infections by both EIAs but in whom p31
antibodies were absent were subtype B infections.

Adaptation of cut-offs for retesting in triplicate
The standard protocol for BED CEIA and LAg-Avidity
EIA recommend triplicate retesting of all samples with a
OD-n of ≤1.2 and ≤2.0 respectively. The added value of
this confirmatory test was investigated by analyzing the
number of samples with a different conclusion after trip-
licate testing than when only the initial singleton test
result would have been taken into account. This was the
case for 4 samples for BED CEIA and 13 samples for
LAg-Avidity EIA. These samples had an initial singleton
OD-n between 0.706 and 0.881 for BED CEIA and
between 1.160 and 1.553 for LAg-Avidity EIA. For the de-
cision tree we therefore felt confident to narrow the range
of OD-n requiring confirmatory retesting to ≤1.000 and
>0.700 for BED and ≤1.600 and >1.100 for LAg-Avidity.

Decision tree
Based on the assembled information a multi-assay
decision tree for infection timing at diagnosis in therapy
naïve patients with a detectable viral load was designed
(Fig. 3). The initial step is identification of pre-
seroconversion samples (negative or indeterminate
INNO-LIA) and the immediate classification of these
patients as acute infections. Next all remaining samples
are tested with the BED CEIA using the adapted cut-offs
for triplicate retesting to identify long term infections.
Samples predicted by BED CEIA as recently infected are
then tested in LAg-Avidity EIA. The LAg-Avidity results
are interpreted together with information on presence or
absence of p31 antibodies to identify patients with a
‘very early’ infection (both EIAs indicate recent infection,
p31 antibodies still absent) and patients with an ‘early’
infection (both EIAs indicate recent infection, p31 anti-
bodies present). Samples with a BED recent-LAg-Avidity
long term prediction, are considered to be collected in a
slightly more advanced infection stage called ‘recent’.
The latter classification is most prone to errors. To
reduce the number of false recent infection classifica-
tions, samples in this categories without p31 antibodies
or with a CD4 count of <100 cells/mm3 are reclassified
as presumed advanced infections. Considering the calcu-
lated recency windows for both EIA and p31 antibodies
it is estimated that the very early classification represent
infections of less than 3 months, the early classification
infections of less than 4 months and the recent classifi-
cation infections of less than 6 months. For the serial
samples from seroconverters, the decision tree was able
to time the infection with a sensitivity and specificity
identical to or higher than the sensitivity and specificity
obtained for the individual assays. The results obtained
after simulation of the decision tree for the cross-

Table 2 Sensitivity and specificity of LAg-Avidity, BED and the decision tree for longitudinal seroconverter samples

Decision tree

Duration of
infection (days)

Recent infection
(n)

Long term
infection (n)

LAg-Avidity EIA BED CEIA Classification 1 Classification 2

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

110 87 150 0.94 0.93 1.00 0.79 0.95 0.93 1.00 0.79

120 92 145 0.93 0.96 1.00 0.81 0.95 0.96 1.00 0.81

130 96 141 0.91 0.96 0.98 0.82 0.92 0.96 0.98 0.82

140 99 138 0.88 0.96 0.97 0.83 0.89 0.96 0.97 0.83

150 103 134 0.84 0.96 0.97 0.86 0.85 0.96 0.97 0.86

160 104 133 0.84 0.96 0.97 0.86 0.85 0.96 0.97 0.86

170 109 128 0.81 0.97 0.95 0.88 0.82 0.97 0.95 0.88

180 113 124 0.79 0.98 0.93 0.89 0.80 0.98 0.93 0.89

Different recency windows were applied by changing the cut-off for duration of infection. The duration of infection is the periods (in days) after collection of the
first pre-seroconversion sample. Recent infection: samples taken before the cut-off set for duration of infection, long term infection: samples taken at or after the
cut-off set for duration of infection. For the decision tree, either all ‘very early’ and ‘early’ results were considered as recent (classification 1) or all ‘very early’, ‘early’
and ‘recent’ results were considered as recent (classification 2)
Abbreviations: n number, EIA Enzyme Immuno Assay, CEIA Capture Enzyme Immuno Assay

Table 3 False Recency predictions in special populations

n INNO-LIA
p31 (%)

LAg-Avidity
EIA (%)

BED
CEIA (%)

Decision
tree (%)

ART treated 12 16.7 41.7 100.0 100.0

Elite controllers 11 27.3 36.4 36.4 36.4

Slow progressors 6 0 0 0 0

Advanced infections 19 36.8 0 21.1 0

Abbreviations: ART Antiretroviral Therapy, EIA Enzyme Immuno Assay, CEIA
Capture Enzyme Immuno Assay
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sectional samples are shown in Table 4. For these 566
cross-sectional samples, application of the decision tree
would have reduced the number of single tests with
29.8% and the number of triplicate tests with 84.2%
resulting in an estimated cost reduction per sample from
13.2 USD to 5.2 USD, without any loss in information.

Discussion
Acute HIV-1 infection is characterized by the presence
of viral antigens or viral RNA in the absence of specific
antibodies and can easily be recognized based on the
results of routinely performed diagnostic assays [16].

The sequential emergence of reactivity in different
diagnostic tests has been used as a tool for the staging of
primary infection by Fiebig et al. [17]. The acute pre-ser-
oconversion stage however is short, considered to last
between 12 and 99 days [18], and most infections are di-
agnosed later. Considerable effort has been devoted to
the validation of methods or approaches that allow reli-
able estimation of the time of infection at diagnosis
post-seroconversion. The literature on this subject is ex-
tensive but lacks consistency, with regard to the
methods applied, the assays used and the patient popula-
tion tested. Despite the many efforts, a generally

Table 4 Result of infection timing for cross-sectional samples from 566 newly diagnosed individuals

INNO-LIA p31 LAg-Avidity EIA BED CEIA Decision tree

n Seroconversion Very early Early Recent Long term Advanced

Negative/ID Recent Recent Recent 24 Congruent 24

Positive Recent Recent Recent 81 81

Positive Long-term Recent Recent 56 56

Positive Long-term Long-term Recent 74 71 3

Positive Long-term Long-term Long-term 313 313

Positive Recent Long-term Recent 8 Incongruent 8

Positive Long-term Recent Long-term 1 1

Positive Recent Long-term Long-term 9 9

566

Results that are in-line with the expectations when considering the differences in recency window are labeled as ‘congruent’ and results that are not in-line with
these expectations are labeled as ‘incongruent’
Abbreviations: ID indeterminate, EIA Enzyme Immuno Assay, CEIA Capture Enzyme Immuno Assay, INNO-LIA Innogenetics Line Immuno Assay

Fig. 3 Decision tree for infection timing
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accepted gold standard method for infection timing is
still missing. Any initiative for HIV incidence measure-
ment therefore requires appropriate validation of poten-
tial approaches on samples collected from the intended
target population.
The aim of the present study was to develop a

method for infection timing in patients newly diag-
nosed with HIV-1 infection in Belgium. The objective
was to find an approach that permits incidence measure-
ment but also enables reliable infection timing in individ-
ual patients. The latter must facilitate a more profound
characterization of patients entering care, a better identifi-
cation of the reasons for delayed diagnosis and improved
insight in the period during which a patient is most
vulnerable to transmit his virus to a second party. This
information is important for the follow-up, adjustment
and improvement of preventive efforts.
Three known markers of infection time were selected

for validation; the HIV specific antibody concentration
measured by BED CEIA, the HIV antibody affinity mea-
sured by LAg-Avidity EIA and the p31 antibody pres-
ence or absence defined from the readout of the INNO-
LIA confirmatory assay. In analogy with the method of
Fiebig et al. [17] we then used the differences in recency
window between these assays to design a decision tree
for serial testing that can distinguish between different
stages of the early infection at low effort and costs. Serial
samples from acutely infected individuals were tested in
order to define the average time that an infection is clas-
sified as recent (the recency window) by the different
markers. The sensitivity and specificity obtained for the
LAg-Avidity and BED EIA approached those reported
before [19]. Clear differences in de median duration of
recent infection were observed between the markers,
with calculated recency windows of 64.5 days (for p31
antibodies), 108.0 days (for LAg-Avidity EIA) and
169.5 days (for BED CEIA). For both EIAs, the calcu-
lated recency window approaches the cut-off provided
by the manufacturer; 130 days for LAg-Avidity and 162
to 197 days for BED. The difference of about 30 days
can be explained by the fact that we considered the day
of collection of the first sample as day 0 and not the day
of the infection. Others have reported comparable
recency windows [20] but some observed a longer dur-
ation of recent infection [7, 21]. Individual differences
between patients and the composition of the population
used for validation may, to some extent, influence the
mean recency window. E.g. we noticed longer recency
windows in patients that are able to control the viral
load to a lower set point early after infection. Incidence
EIAs from different manufacturers may have slightly
different recency windows, even if they are testing the
same parameter and also the method used for calcula-
tion of the recency window may differ.

Since the recency window highly impacts calculated
incidence rates, it is an essential factor to consider when
deciding on the use of an assay for infection timing. The
most ideal recency window for incidence calculation is
one year but none of the markers evaluated reached that
time limit. The BED CEIA has the longest recency
window and thus seems the most suited but, as we and
others observed, it is also the assay with the highest false
recency rate [22–24]. In a recent publication, Kassanjee
et al. suggest to optimize the recency windows of immu-
noassays by tuning of the thresholds [25]. This approach,
that was also explored by Konikoff et al. [26] deserves
further exploration.
To minimize false classifications, the BED CEIA

manufacturer recommends exclusion of individuals on
ART, elite suppressors and individuals with a CD4 count
<200 cells/mm3. While our findings support the import-
ance of excluding patients with an undetectable viral
load, the added value of eliminating patients with a CD4
count <200 is debatable. Though this will eliminate part
of the false recent predictions in advanced infection [27],
it will fail to exclude them all. Besides, because the CD4
count may occasionally drop to below 200 cells/mm3

after acute infection [28, 29], exclusion of patients with a
low CD4 count may impact the figures on recent infec-
tions. We therefore opted to only reclassify as advanced
infections those patients with a CD4 count of less than
100 cells/mm3 that are considered as recently infected
by BED CEIA only. False recent predictions of BED EIA
in the advanced stage of infection can be explained by
the reduction in HIV antibody concentration with
progressing disease [30]. This decrease in antibody con-
centration may also lead to disappearance of p31 anti-
bodies but seems to have little effect on the overall
antibody affinity. Indeed, false recent predictions in
patients with late stage disease are rare for the LAg-
Avidity EIA [7, 19, 31]. In the decision tree, absence of
p31 antibodies in patients identified as recently infected
only by BED CEIA is considered indicative for the
advanced stage of infection. We cannot exclude however
that patients failing to mount a p31 antibody response
or with a delayed p31 antibody production, as one of the
patients in the longitudinal study, are falsely considered
as having an advanced disease but because this is consid-
ered to be a rare phenomenon we believe that this
potential error does not outweigh the overall gain in reli-
ability of the infection timing.
The choice for BED CEIA in first line is justified by its

high reliability for the identification of long term infec-
tions and its lower price (approximately 450 USD per kit
versus 650 USD for LAg-Avidity EIA). The use of BED
CEIA in first line also allows to profit from the longer
recency window of this assay and provides a way to
discriminate between ‘early’ and ‘recent’ infections. The
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classifications ‘very early’ or ‘early’ infection will always
be based on a predicted recent infection by both EIAs
and is therefore highly reliable. The classification ‘recent’
infection will be only based on a predicted recent infec-
tion by the BED CEIA, an assay with a higher false re-
cent rate. Despite a correction for false receny
predictions based on the CD4 count and the p31 anti-
body presence or absence this category may suffer from
some erroneous classifications. For this study the infor-
mation on the presence or absence of p31 antibodies is
deduced from the INNO-LIA confirmatory assay.
Whether the more recently developed immunochroma-
tographic assay, Geenius™ HIV ½ supplemental assay
(Biorad, Marnes-la-Coquette, France) may serve this
purpose needs to be examined.
This study was performed in a country with a hetero-

geneous HIV epidemic [13, 32]. There have been some
reports about subtype related differences in the perform-
ance of incidence EIAs, more particularly a higher
frequency of false recent predictions by BED CEIA in
subtype D has been described [33, 34]. We found no
indications for influence of the subtype on the infection
timing but the contribution of subtype D was low. Of
the 7 subtype D infections, 3 were predicted as long
term, 1 as very early, 2 as early and 1 as recent. Unex-
pectedly, a higher contribution of subtype B infections
was observed amongst the patients predicted as long
term infected by both EIAs but missing p31 antibodies.
The overrepresentation of subtype B in these patients
with a presumed advanced disease was not statistically
significant but further investigation is warranted.
Any incidence measurement that is based on specific

features of the humoral immune response will be prone
to errors because of the natural variability in antibody
production and maturation. Quantification of the genetic
variability of the virus has been suggested as an alterna-
tive marker of infection time [35] but the methods to
define genetic variability are cumbersome and difficult
to standardize and it can be expected that the extent of
genetic evolution will also vary significantly between
individuals.
Serial testing algorithms for HIV incidence measure-

ment have been presented before [12, 36]. Using this
approach we developed a decision tree that, with limited
effort and cost, combines accuracy and precision to
define HIV-1 infection time on single samples.

Conclusion
Taken into account the strengths and weaknesses of dif-
ferent markers of infection time, a stepwise decision tree
was set up that allows to classify, at diagnosis, an HIV
infection as very early (infection of less than 3 months
before), early (less than 4 months before) and recent
(less than 6 months before). Being able to discriminate

these early infection phases will be an important asset in
studies aimed at analyzing the dynamics of local
epidemics and the effects of prevention strategies.
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