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ABSTRACT Our objective was to evaluate the performance of HIV testing algo-
rithms based on WHO recommendations, using data from specimens collected at six
HIV testing and counseling sites in sub-Saharan Africa (Conakry, Guinea; Kitgum and
Arua, Uganda; Homa Bay, Kenya; Douala, Cameroon; Baraka, Democratic Republic of
Congo). A total of 2,780 samples, including 1,306 HIV-positive samples, were included in
the analysis. HIV testing algorithms were designed using Determine as a first test.
Second and third rapid diagnostic tests (RDTs) were selected based on site-specific
performance, adhering where possible to the WHO-recommended minimum require-
ments of �99% sensitivity and specificity. The threshold for specificity was reduced
to 98% or 96% if necessary. We also simulated algorithms consisting of one RDT fol-
lowed by a simple confirmatory assay. The positive predictive values (PPV) of the
simulated algorithms ranged from 75.8% to 100% using strategies recommended for
high-prevalence settings, 98.7% to 100% using strategies recommended for low-
prevalence settings, and 98.1% to 100% using a rapid test followed by a simple con-
firmatory assay. Although we were able to design algorithms that met the recom-
mended PPV of �99% in five of six sites using the applicable high-prevalence
strategy, options were often very limited due to suboptimal performance of individ-
ual RDTs and to shared falsely reactive results. These results underscore the impact
of the sequence of HIV tests and of shared false-reactivity data on algorithm perfor-
mance. Where it is not possible to identify tests that meet WHO-recommended
specifications, the low-prevalence strategy may be more suitable.

KEYWORDS WHO guidelines, diagnostic accuracy, diagnostic algorithms, human
immunodeficiency virus, positive predictive value, rapid tests

The HIV rapid diagnostic tests (RDTs) are the main diagnostic tools for HIV screening
and diagnosis in resource-constrained settings (1). Given the potential for the

severe medical, psychological, and social impacts of HIV misdiagnosis and the evidence
of elevated false-positive results from some settings, it is imperative that HIV diagnosis
is confirmed to be both sensitive and specific (2).

In 2012 and 2015, the World Health Organization (WHO) published revisions of the
HIV testing guidelines with different recommendations for low (�5%)- and high
(�5%)-HIV-prevalence settings (1, 3, 4). These recommendations call for the sequential
use of up to three different serological assays, including RDTs, for final HIV diagnoses.
Whereas a first nonreactive test result is sufficient to provide a final negative result in
both settings, two and three reactive assays are needed to provide final HIV-positive
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results in high- and low-prevalence settings, respectively (Fig. 1). The guidelines stipulate
that each of the three RDTs should have a sensitivity of at least 99%, while the first RDT
should have at least 98% specificity and the second and third RDTs at least 99% specificity;
overall, the combination should be designed to minimize the potential for shared false
reactivity. Different strategies for high- and low-prevalence settings were developed based
on mathematical models using three theoretical assays assumed to meet the criteria
described above to achieve an overall positive predictive value (PPV) of at least 99% (1). To
date, however, these recommendations and the performance of the resulting algorithms
have not been validated using real data from different field contexts.

Several factors could influence the design and performance of these algorithms.
Although WHO-prequalified HIV RDTs met the minimum recommended sensitivity and
specificity criteria in the prequalification evaluations, several reports from different
countries indicate much poorer performance in real-world settings (5–12). Moreover,
little is known about shared false-reactivity results among different RDTs (13). The use of
the same antigen (Ag) preparations to produce different tests, which is occurring with
increasing frequency due to rebranding or relabeling arrangements among test manufac-
turers (1), can lead to shared cross-reactivity, though this may not be the only cause. Even
low levels of shared cross-reactivity, or marginally substandard performance of one RDT,
could have a meaningful impact on the performance of an algorithm.

Given concerns about false positivity raised by previous findings, over the period of
2011 to 2015 we conducted an evaluation of eight HIV RDTs and two simple confir-
matory assays differentiating antibodies against several viral proteins (14). We used
specimens collected at six HIV testing and counseling (HTC) centers in sub-Saharan
Africa, the region most highly affected by HIV/AIDS, with approximately 70% of the

FIG 1 HIV testing strategies used to simulate algorithms (A to C) and reference testing algorithm used in this study (D).
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total number of people living with HIV worldwide (15). Consistent with the aforemen-
tioned reports (5–12), this study revealed lower-than-expected specificity for most of
the tests and important variations by specimen origin (14). Here, we have used these
data to validate the performance of simulated algorithms developed according to the
latest WHO recommendations. Additionally, we explored the possibility of using algo-
rithms incorporating simple confirmatory assays that could be suitable for use in low-
and middle-income countries.

RESULTS

From August 2011 to January 2015, a total of 2,785 samples collected at the six HTC
sites (comprising between 437 and 500 samples at each site) were sent to the reference
laboratory. The HIV positivity rate by site ranged from 8.0% to 37.1% (Table 1). More
information on the characteristics of clients included in the study are provided else-
where (16). Using the reference algorithm, 1,306 were classified as HIV-positive clients
(including 1 positive for HIV-2) and 1,474 as HIV-negative clients. Three samples with
inconclusive reference results and two samples with reference results suggestive of
acute infection were excluded from the analysis.

The performance of the HIV RDTs and simple confirmatory tests assessed individu-
ally and by origin of specimens is described elsewhere (14). Of a total of 438 specimens
that gave at least one false reactive result, the majority gave a falsely reactive result
with only one of the eight RDTs (n � 295), 81 with two RDTs, 41 with three RDTs, 15
with four RDTs, 4 with five RDTs, and 2 with six RDTs. All RDTs exhibited some shared
false-reactivity results with each of the seven other RDTs, with the exception of SD
Bioline and Stat-Pak (Table 2).

TABLE 1 Demographic and clinical characteristics by study site

Parameter

Value(s)

Guinea
(Conakry)

Cameroon
(Douala)

Uganda
(Kitgum)

Kenya
(Homa Bay)

Uganda
(Arua)

DRC
(Baraka) Total

Tested at site during study period
Total N 2,033 1,239 3,159 1,003 2,971 3,610 14,015
Positive on site, n (%) 574 (28.2) 396 (32.0) 332 (10.5) 372 (37.1) 386 (13.0) 288 (8.0) 2,348 (16.8)

Included in the study
Total N 446 462 437 500 443 497 2,785
Positive, n (%) 222 (49.8) 214 (46.3) 213 (48.7) 224 (44.8) 212 (47.9) 221 (44.5) 1,306 (46.9)
Negative, n (%) 224 (50.2) 247 (53.5) 222 (50.8) 276 (55.2) 230 (51.9) 275 (55.3) 1,474 (52.9)
Acute infection, n (%) 0 (0) 0 (0) 2 (0.5) 0 (0) 0 (0) 0 (0) 2 (0.1)
Indeterminate, n (%) 0 (0) 1 (0.2) 0 (0) 0 (0) 1 (0.2) 1 (0.2) 3 (0.1)

Age and sex
Median age, yrs (IQR) 29 (22–39) 31 (25–41) 30 (24–39) 30 (23–40) 29 (23–37) 30 (23–39) 30 (24–39)
Males, n (%) 132 (29.6) 163 (35.3) 176 (40.3) 201 (40.2) 213 (48.2) 177 (35.6) 1,062 (38.2)

TABLE 2 Number and proportion of shared falsely reactive results using RDT1 followed by RDT2

RDT1

Total no. of falsely
reactive results
by RDT1

No. (%) of falsely
reactive results
by RDT1 onlyb

No. (%) of falsely reactive results with RDT2a

Determine Uni-Gold Genie Fast Vikia Stat-Pak Insti SD Bioline
First
Response

Determine 124 42 (33.9) 11 (8.9) 26 (21.0) 46 (37.1) 6 (4.8) 29 (23.4) 9 (7.3) 23 (18.6)
Uni-Gold 39 11 (28.2) 11 (28.2) 10 (25.6) 4 (10.3) 1 (2.6) 18 (46.2) 5 (12.8) 5 (12.8)
Genie Fast 102 46 (45.1) 26 (25.5) 10 (9.8) 17 (16.7) 6 (5.9) 25 (24.5) 8 (7.8) 19 (18.6)
Vikia 61 11 (18.0) 46 (75.4) 4 (6.5) 17 (27.9) 6 (9.8) 15 (25.6) 3 (4.9) 10 (16.4)
Stat-Pak 10 3 (30.0) 6 (60.0) 1 (10.0) 6 (60.0) 6 (60.0) 4 (40.0) 0 (0.0) 2 (20.0)
Insti 151 86 (57.0) 29 (19.2) 18 (11.9) 25 (16.6) 15 (9.9) 4 (2.7) 18 (11.9) 18 (11.9)
SD Bioline 43 9 (20.9) 9 (20.9) 5 (11.6) 8 (18.6) 3 (7.0) 0 (0.0) 18 (41.9) 20 (46.5)
First Response 142 87 (61.3) 23 (16.2) 5 (3.5) 19 (13.4) 10 (7.0) 2 (1.4) 18 (12.7) 20 (14.1)
aThe percentages in parentheses indicate the proportions of falsely reactive results by RDT2 among the samples with falsely reactive results by RDT1.
bThe percentages in parentheses indicate the proportion of falsely reactive results by RDT1 that did not show any falsely reactive results with any other RDT.
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For only one site, Conakry (Guinea), could we identify at least two RDTs to be used
as a second or third test with sensitivity and specificity estimates of �99%, as recom-
mended by WHO. Using the testing strategy for high-prevalence settings with Deter-
mine as the first test and these assays as second and third tests, the PPV of the algorithms
ranged from 98.3% to 100% (Table 3). For three other sites (Douala, Cameroon; Kitgum,
Uganda; Homa Bay, Kenya), only one test met the WHO criteria, necessitating the use of
tests with a specificity of �98% as RDT2 and RDT3 and resulting in PPVs ranging from
92.7% to 100%. For the remaining two sites (Arua, Uganda; Baraka, Democratic Republic
of Congo [DRC]), one test met the WHO criteria, but all others had specificities of �98%,
necessitating the use of tests with specificities between 96% and 98%. The PPV of the
resulting algorithms ranged from 75.8% to 99.6%. Detailed results are presented in
Table 3.

Using the WHO strategy for low-prevalence settings, most simulated algorithms
showed PPVs of �99%, even for the two sites (Arua, Uganda; Baraka, DRC) where tests
with specificities between 96% and 98% were included in the algorithms (Table 4). The

TABLE 3 Simulated algorithms with Determine HIV-1/2 combined with other HIV RDTs in a serial 3-test algorithm for high (�5%)-
prevalence settings

Specimen origin Test 2 Test 3
% sensitivity
(95% CI)

% specificity
(95% CI) % PPV (95% CI) % NPV (95% CI)

n inconclusive
(adjusted %)

Conakry, Guinea (N � 446) Uni-Gold
Stat-Pak

100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Vikia 100 (98.4–100) 99.3 (98.2–99.8) 98.3 (95.5–99.4) 100 (98.4–100) 0 (0)
SD Bioline 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Vikia

Uni-Gold
100 (98.4–100) 99.3 (98.2–99.8) 98.3 (95.5–99.4) 100 (98.4–100) 0 (0)

Stat-Pak 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
SD Bioline 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Uni-Gold

SD Bioline
100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)

Vikia 100 (98.4–100) 99.3 (98.2–99.8) 98.3 (95.5–99.4) 100 (98.4–100) 0 (0)
Stat-Pak 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)

Douala, Cameroon (N � 461) SD Biolinea Stat-Pak 100 (98.3–100) 100 (98.5–100) 100 (98.3–100) 100 (98.5–100) 2 (0.3)
Stat-Pak SD Biolinea 100 (98.3–100) 99.6 (98.3–99.9) 99.1 (96.3–99.8) 100 (98.5–100) 1 (0.1)

Kitgum, Uganda (N � 435) Uni-Golda

Stat-Pak
96.2 (77.8–99.5) 100 (98.4–100) 100 (98.3–100) 99.5 (96.8–99.9) 0 (0)

SD Biolinea 100 (98.3–100) 99.1 (96.4–99.8) 92.7 (76.6–98.0) 100 (98.3–100) 0 (0)
Stat-Pak

Uni-Golda 96.2 (77.8–99.5) 100 (98.4–100) 100 (98.4–100) 99.5 (96.8–99.9) 0 (0)
SD Biolinea 100 (98.3–100) 99.1 (96.4–99.8) 92.7 (76.6–98.0) 100 (98.3–100) 0 (0)
Uni-Golda

SD Biolinea 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 4 (1.3)
Stat-Pak 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 4 (1.3)

Homa Bay, Kenya (N � 500) Uni-Gold Stat-Paka 99.6 (96.9–99.9) 99.7 (98.1–100) 99.6 (96.9–99.9) 99.7 (98.1–100) 0 (0)
Stat-Paka Uni-Gold 99.6 (96.9–99.9) 100 (98.7–100) 100 (98.7–100) 99.7 (98.1–100) 2 (0.4)

Arua, Uganda (N � 442) Uni-Goldb

Stat-Pak
100 (98.3–100) 99.1 (96.5–99.8) 95.0 (82.3–98.7) 100 (98.4–100) 1 (0.1)

Vikiab 100 (98.3–100) 98.1 (95.3–99.2) 89.7 (77.5–95.7) 100 (98.4–100) 0 (0)
Vikiab

Uni-Goldb 100 (98.3–100) 98.1 (95.3–99.2) 89.7 (77.5–95.7) 100 (98.4–100) 2 (0.8)
Stat-Pak 100 (98.3–100) 99.9 (99.5–100) 99.6 (97.0–99.9) 100 (98.4–100) 2 (0.8)
Uni-Goldb

Vikiab 100 (98.3–100) 99.1 (96.5–99.8) 95.0 (92.3–98.7) 100 (98.4–100) 6 (1.6)
Stat-Pak 100 (98.3–100) 99.9 (99.5–100) 99.6 (97.0–99.9) 100 (98.4–100) 5 (1.6)

Baraka, DRC (N � 496) Uni-Goldb

Stat-Pak
100 (98.3–100) 99.0 (96.6–99.7) 89.2 (71.3–96.5) 100 (98.6–100) 3 (0.1)

Vikiab 100 (98.3–100) 97.3 (94.5–98.7) 75.8 (60.2–86.7) 100 (98.6–100) 1 (0.0)
SD Biolineb 100 (98.3–100) 99.5 (97.2–99.9) 94.3 (75.3–98.9) 100 (98.6–100) 3 (0.1)
Vikiab

Uni-Goldb

100 (98.3–100) 97.2 (94.4–98.6) 75.8 (60.2–86.7) 100 (98.6–100) 6 (1.0)
Stat-Pak 100 (98.3–100) 99.9 (99.6–100) 98.7 (96.1–99.6) 100 (98.6–100) 6 (1.0)
SD Biolineb 100 (98.3–100) 99.5 (97.2–99.9) 94.3 (75.3–98.9) 100 (98.6–100) 6 (1.0)
Uni-Goldb

SD Biolineb

100 (98.3–100) 99.0 (96.6–99.7) 89.2 (71.3–96.5) 100 (98.6–100) 3 (0.5)
Vikiab 100 (98.3–100) 97.2 (94.4–98.7) 75.8 (60.2–86.7) 100 (98.6–100) 4 (0.5)
Stat-Pak 100 (98.3–100) 99.9 (99.6–100) 98.7 (96.1–99.6) 100 (98.6–100) 3 (0.5)
Uni-Goldb

Vikiab

100 (98.3–100) 98.9 (96.5–99.7) 89.2 (71.3–96.5) 100 (98.5–100) 18 (2.5)
Stat-Pak 100 (98.3–100) 99.9 (99.6–100) 98.7 (96.1–99.6) 100 (98.5–100) 16 (2.4)
SD Biolineb 100 (98.3–100) 99.5 (97.1–99.9) 94.3 (75.3–98.9) 100 (98.5–100) 19 (2.5)

aRDT specificity was estimated to be between 98.0% and 98.9% for this site.
bRDT specificity was estimated to be between 96.0% and 97.9% for this site.
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proportion of inconclusive results remained low at �1% for most algorithms but rose
to 2.5% at sites where tests with specificities between 96% and 98% were included in
the algorithms.

We also evaluated a simplified version of a reference algorithm, using a rapid test
meeting criteria for RDT1 as a screening assay followed by a simple confirmatory assay.
The PPVs of these algorithms ranged from 98.1% to 100%, with the proportions of
inconclusive results ranging from 0% to 0.5% (Table 5).

DISCUSSION

WHO-recommended HIV testing strategies were developed based on models using
theoretical RDTs with high sensitivity and specificity and no shared cross-reactivity.
Here, we have used the results of a large multicenter evaluation of individual RDTs to
estimate the performance of HIV testing algorithms using real data from six sub-
Saharan African HTC sites. To our knowledge, this was the first study that evaluated the
performance of algorithms based on the new WHO recommendations; all other such

TABLE 4 Simulated algorithms with Determine HIV-1/2 combined with other HIV RDTs in a serial 3-test algorithm for low (�5%)-
prevalence settings

Specimen origin Test 2 Test 3
% sensitivity
(95% CI)

% specificity
(95% CI) % PPV (95% CI) % NPV (95% CI)

n inconclusive
(adjusted %)

Conakry, Guinea (N � 446) Uni-Gold
Stat-Pak

100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Vikia 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 4 (0.5)
SD Bioline 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Vikia

Uni-Gold
100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 4 (0.5)

Stat-Pak 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
SD Bioline 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Uni-Gold

SD Bioline
100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)

Vikia 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 4 (0.5)
Stat-Pak 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)

Douala, Cameroon (N � 461) SD Biolinea Stat-Pak 100 (98.3–100) 100 (98.5–100) 100 (98.3–100) 100 (98.5–100) 1 (0.1)
Stat-Pak SD Biolinea 99.5 (96.7–99.9) 100 (98.5–100) 100 (98.3–100) 99.8 (98.5–100) 2 (0.3)

Kitgum, Uganda (N � 435) Uni-Golda

Stat-Pak
96.2 (77.8–99.5) 100 (98.4–100) 100 (98.3–100) 99.5 (96.8–99.9) 0 (0)

SD Biolinea 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 4 (1.3)
Stat-Pak

Uni-Golda 96.2 (77.8–99.5) 100 (98.3–100) 100 (98.3–100) 99.5 (96.8–99.9) 0 (0)
SD Biolinea 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 100 (98.3–100) 4 (1.3)
Uni-Golda

SD Biolinea 96.2 (77.8–99.5) 100 (98.3–100) 100 (98.3–100) 99.5 (96.8–99.9) 0 (0)
Stat-Pak 96.2 (77.8–99.5) 100 (98.3–100) 100 (98.3–100) 99.5 (96.8–99.9) 0 (0)

Homa Bay, Kenya (N � 500) Uni-Gold Stat-Paka 99.6 (96.9–99.9) 100 (98.7–100) 100 (98.7–100) 99.7 (98.1–100) 1 (0.2)
Stat-Paka Uni-Gold 99.6 (96.9–99.9) 100 (98.7–100) 100 (98.7–100) 99.7 (98.1–100) 0 (0)

Arua, Uganda (N � 442) Uni-Goldb

Stat-Pak
100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 2 (0.8)

Vikiab 100 (98.3–100) 99.9 (99.5–100) 99.6 (97.0–99.9) 100 (98.4–100) 5 (1.6)
Vikiab

Uni-Goldb 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 6 (1.6)
Stat-Pak 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 1 (0.1)
Uni-Goldb

Vikiab 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 2 (0.8)
Stat-Pak 100 (98.3–100) 99.9 (99.5–100) 99.6 (97.0–99.9) 100 (98.4–100) 0 (0)

Baraka, DRC (N � 496) Uni-Goldb

Stat-Pak
99.6 (96.8–99.9) 99.9 (99.7–100) 99.6 (97.0–99.9) 99.9 (99.7–100) 5 (0.9)

Vikiab 99.6 (96.8–99.9) 99.9 (99.6–99.9) 98.7 (96.1–99.6) 99.9 (99.7–100) 16 (2.4)
SD Biolineb 100 (98.3–100) 100 (98.6–100) 100 (98.3–100) 100 (98.6–100) 3 (0.5)
Vikiab

Uni-Goldb

99.6 (96.8–99.9) 99.9 (99.7–100) 99.1 (96.6–99.8) 99.9 (99.7–100) 18 (2.5)
Stat-Pak 100 (98.3–100) 99.9 (99.7–100) 99.6 (97.0–99.9) 100 (98.6–100) 3 (0.1)
SD Biolineb 100 (98.3–100) 99.9 (99.7–100) 99.6 (97.0–99.9) 100 (98.6–100) 3 (0.5)
Uni-Goldb

SD Biolineb

99.6 (96.8–99.9) 100 (98.6–100) 100 (98.3–100) 99.9 (99.7–100) 6 (1.0)
Vikiab 99.6 (96.8–99.9) 100 (98.6–100) 100 (98.3–100) 99.9 (99.7–100) 19 (2.5)
Stat-Pak 100 (98.3–100) 100 (98.6–100) 100 (98.3–100) 100 (98.6–100) 3 (0.1)
Uni-Goldb

Vikiab

99.6 (96.8–99.9) 99.9 (99.7–100) 99.1 (96.6–99.8) 99.9 (99.7–100) 5 (0.9)
Stat-Pak 100 (98.3–100) 99.9 (99.7–100) 98.7 (96.1–99.6) 100 (98.6–100) 1 (0.0)
SD Biolineb 100 (98.3–100) 100 (98.6–100) 100 (98.3–100) 100 (98.6–100) 4 (0.5)

aRDT specificity was estimated to be between 98.0% and 98.9% for this site.
bRDT specificity was estimated to be between 96.0% and 97.9% for this site.
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studies published to date focused on strategies using either two tests or three tests,
with the third test used as a tiebreaker (7, 9, 11, 17–20). Though WHO has never
recommended the use of a tiebreaker due to the associated risk of generating false-
positive results, this strategy is still widely used (21).

The use of several algorithms simulated here based on the strategy for high-
prevalence settings resulted in a PPV of �99%, even though RDTs with high
specificity were used as second and third tests, due to shared falsely reactive results
among the tests used. In particular, a general trend of shared falsely reactive results
between Determine and Vikia could explain the finding that combinations using
these two tests with samples from Conakry resulted in a suboptimal PPV of 98.3%,
despite the fact that each test used at that site had an estimated specificity of
�99%. Although we could not identify a similar trend of shared falsely reactive
results between Determine and SD Bioline, the level of shared false reactivity was
high with samples from Kitgum, leading to a PPV of only 92.7% for algorithms using
these tests for Kitgum despite the acceptable specificity of SD Bioline (98.6%) on
specimens from this site. A larger sample size is needed to investigate whether this
represents a local phenomenon or a random occurrence. In the absence of reliable
knowledge on the source of antigen preparations and of a good understanding of
the mechanisms underlying falsely reactive results, only raw data from RDT evalu-
ation studies using samples from local sites can provide the necessary information
to avoid shared falsely reactive results.

For sites where only one test had a specificity of �99% and tests with specificities
of 96% to 98% had to be included in the algorithms, the PPV of algorithms using the

TABLE 5 Simulated algorithms with a rapid test used as a screening test followed by a simple confirmatory test for reactive samples

Specimen origin
Screening
test

Confirmatory
test

% sensitivity
(95% CI)

% specificity
(95% CI) % PPV (95% CI) % NPV (95% CI)

n inconclusive
(adjusted %)

Conakry, Guinea (N � 446) Determine

Immunocomb
Combfirm

100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 4 (0.5)
Uni-Gold 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Vikia 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 3 (0.4)
Stat-Pak 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Insti 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 1 (0.1)
SD Bioline 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 100 (98.4–100) 0 (0)
Determine

Geenius

100 (98.4–100) 99.8 (98.8–100) 99.6 (96.9–99.9) 100 (98.3–100) 4 (0.5)
Uni-Gold 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 0 (0)
Vikia 100 (98.3–100) 99.7 (98.7–99.9) 99.2 (96.6–99.8) 100 (98.3–100) 3 (0.4)
Stat-Pak 100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 0 (0)
Insti 100 (98.3–100) 99.2 (94.6–99.9) 98.1 (87.5–99.7) 100 (98.4–100) 1 (0.1)
SD Bioline 100 (98.3–100) 99.8 (98.8–100) 99.6 (97.1–99.9) 100 (98.4–100) 0 (0)

Douala, Cameroon (N � 461) Stat-Pak Immunocomb
Combfirm

99.5 (96.7–99.9) 99.8 (98.5–100) 99.5 (96.7–99.9) 99.8 (98.5–100) 1 (0.1)
SD Bioline 100 (98.3–100) 100 (98.5–100) 100 (98.3–100) 100 (98.5–100) 1 (0.3)
Stat-Pak

Geenius
99.5 (96.7–99.9) 99.4 (98.0–99.8) 98.6 (95.8–99.6) 99.8 (98.5–100) 0 (0.0)

SD Bioline 100 (98.3–100) 99.8 (98.5–100) 99.5 (96.8–99.9) 100 (98.5–100) 1 (0.3)

Kitgum, Uganda (N � 435) SD Bioline Immunocomb
Combfirm

100 (98.3–100) 100 (98.4–100) 100 (98.3–100) 100 (98.4–100) 1 (0.4)

SD Bioline Geenius 96.2 (77.8–99.5) 100 (98.3–100) 100 (98.3–100) 99.5 (96.8–99.9) 1 (0.4)

Homa Bay, Kenya (N � 500) Uni-Gold Immunocomb
Combfirm

99.6 (96.9–99.9) 100 (98.7–100) 100 (98.4–100) 99.7 (98.1–99.9) 2 (0.3)
Stat-Pak 99.6 (96.9–99.9) 100 (98.7–100) 100 (98.4–100) 99.7 (98.1–99.9) 2 (0.4)
Uni-Gold

Geenius
99.6 (96.9–99.9) 100 (98.7–100) 100 (98.4–100) 99.7 (98.1–99.9) 2 (0.3)

Stat-Pak 99.6 (96.9–99.9) 100 (98.7–100) 100 (98.4–100) 99.7 (98.1–100) 2 (0.4)

Arua, Uganda (N � 442) Stat-Pak Immunocomb
Combfirm

100 (98.3–100) 99.9 (99.5–100) 99.6 (97.0–99.9) 100 (98.4–100) 1 (0.1)

Stat-Pak Geenius 100 (98.2–100) 99.9 (99.5–100) 99.6 (97.0–99.9) 100 (98.4–100) 0 (0)

Baraka, DRC (N � 496) Stat-Pak Immunocomb
Combfirm

100 (98.3–100) 99.9 (99.7–100) 99.6 (97.0–99.9) 100 (98.7–100) 2 (0.1)

Stat-Pak Geenius 100 (98.3–100) 99.9 (99.7–100) 98.7 (96.1–99.6) 100 (98.7–100) 0 (0)

Designing HIV Testing Algorithms Journal of Clinical Microbiology

October 2017 Volume 55 Issue 10 jcm.asm.org 3011

http://jcm.asm.org


strategy for high-prevalence settings varied widely depending on the order of the
second and third tests. In both sites (Arua, Uganda; Baraka, DRC), only algorithms using
the highly specific test Stat-Pak as the second test reached or approached the thresh-
old, while all other combinations gave PPVs below 95%. These results underscore the
importance of the order of the RDTs in the algorithm and of using the test with the
highest specificity as the second (and not third) test in employing a three-test strategy
in the absence of two highly specific tests.

The strategy recommended for low-prevalence settings, which requires three reac-
tive RDTs to establish a diagnosis of HIV infection, generally resulted in algorithms with
very high PPVs. For Baraka, DRC, where none of the high-prevalence algorithms
achieved a PPV of �99%, this was the only strategy that reached the threshold. In
addition, since this strategy classifies discordant results (e.g., RDT1-positive and RDT2-
negative [RDT1� RDT2�] results) as negative results, it is important to ensure that the
negative predictive value (NPV), together with the PPV, is �99%, as was the case for the
algorithms simulated here. This suggests that the low-prevalence-HIV testing strategy
may be suitable for use not only in settings with low HIV prevalence but wherever HIV
RDTs are known to have specificity issues.

We also propose a testing strategy that, similarly to a reference algorithm, relies on
a sensitive screening assay followed by a simple confirmatory assay. One of these
confirmatory assays, the ImmunoComb Combfirm, has shown good correlation with
Western blotting in evaluations in the DRC and Ethiopia to confirm a two-RDT algo-
rithm positive result but is no longer produced (11, 22). Another option, the Geenius
assay, has generally shown performance results sufficient for recommending it as an
alternative to existing confirmatory assays such as Western blotting or immunoblotting
(23–29). However, here we found that the use of these confirmatory assays did not
consistently ensure PPVs of �99% in the different combinations tested, particularly for
the two sites where RDTs showed high levels of false reactivity. Given the added
complexity and cost of the Geenius confirmatory assay, we conclude that it does not
compare favorably with the three-RDT combination recommended by WHO for use in
these settings.

One of the limitations of this study was that Determine was used as the first assay
in all algorithms that we simulated. We used Determine for the same reasons for which
it is currently used as the first test in most algorithms: its relative low cost and very high
sensitivity. Another limitation is that our sampling strategy underrepresented clients
with negative results according to the onsite algorithm, resulting in a collection of
specimens that was not representative of the population screened. To account for this
verification bias, we conducted a weighted analysis aimed at mitigating its effect. The
inclusion of all specimens with inconclusive results from onsite testing might also
explain the high proportion of falsely reactive specimens in this study compared to
other evaluations, including those for WHO prequalification. We believe, however,
that these data reflect the reality of HIV testing at HTC sites. Nevertheless, although
centralized testing in a reference laboratory had advantages for standardization and
comparison of results, it had the disadvantage of not reproducing all aspects of field
conditions. In particular, we could not reproduce repeat testing for clients with incon-
clusive results, which might have an impact on the final performance of these algo-
rithms. Finally, we did not illustrate the use of these algorithms in low-prevalence settings,
since all specimens came from sites that would be classified as high-prevalence sites. A
simple calculation using the sensitivity and specificity reported here, together with the
prevalence in the setting of interest, could provide useful information on the expected
PPV for such settings. In addition, since most of the low-prevalence algorithms achieved
a PPV of 100%, which would not be affected by HIV prevalence, our data support the
use of the recommended strategy for these settings.

This attempt to illustrate the process and results of designing an HIV testing strategy
using real data offers important lessons for navigating the various obstacles in the
process. First, our data underscore the impact of shared false-reactivity results on the
performance of algorithms and show that this phenomenon affects most RDT combi-
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nations to different degrees. More-transparent information from test manufacturers on
possible shared false reactivity due to test rebranding or common sources of antigens
is needed. Moreover, shared falsely reactive results from other studies performed using
a standard panel for the evaluation of different assays would provide useful comple-
mentary information. Second, our results demonstrate that data from local evaluations
are important for assessing diagnostic accuracy in the specific setting, although ob-
taining such information is often not feasible (30). We also highlight the importance of
the order of tests, particularly in using the strategy for settings of high HIV prevalence,
where the test with highest specificity should be used as the second rather than the
third assay. Finally, if sufficient information is available and these steps are followed,
good RDT-based HIV testing algorithms can be designed, though sometimes only with
the strategy recommended for low-prevalence settings.

MATERIALS AND METHODS
Study setting. The samples used for this study were collected at the following voluntary or

provider-initiated HTC service programs in six public health care clinics and hospitals in Sub-Saharan
Africa between August 2011 and January 2015: the Centre Communautaire Matam in Conakry, Guinea;
Madi Opei Clinic and Kitgum Matidi Clinic in Kitgum, Uganda; Homa Bay District Hospital in Homa Bay,
Kenya; Arua District Hospital in Arua, Uganda; Nylon Hospital in Doula, Cameroon; and Baraka Hospital
in Baraka, South Kivu, DRC. The details of the HIV testing algorithm used at each site are provided
elsewhere (16). Minimums of 220 positive and 220 negative specimens, as classified by the algorithm
used on site, were prospectively collected as described previously (16). All frozen plasma samples were
then sent to the AIDS reference laboratory at the Institute for Tropical Medicine (ITM), Antwerp, Belgium,
for characterization with a standard reference algorithm (Fig. 1) and for testing with eight RDTs and two
simple confirmatory assays.

Reference method for HIV diagnosis. All plasma samples were tested at ITM using a fourth-
generation enzyme-linked immunosorbent assay (ELISA) detecting both antibodies and antigens (Vi-
ronostika HIV Uni-Form II Ag/Ab; bioMérieux, France) followed by a line immunoassay (LIA) (i.e., INNO-LIA
HIV I/II Score; Innogenetics NV, Ghent, Belgium) and an antigen-enzyme immunoassay (Ag-EIA) (i.e.,
Innotest HIV Antigen MAb; Innogenetics NV, Ghent, Belgium) and in-house DNA PCR when applicable, as
described for Fig. 1.

HIV rapid diagnostic tests. All eight HIV RDTs (Determine HIV-1/2 [Determine; Alere, USA], Uni-Gold
HIV [Uni-Gold; Trinity Biotech, Ireland], Genie Fast HIV 1/2 [Genie Fast; BioRad Laboratories, USA], Vikia
HIV 1/2 [Vikia; bioMérieux, France], HIV 1/2 Stat-Pak [Stat-Pak; Chembio, USA], Insti HIV-1/HIV-2 antibody
test [Insti; bioLytical, Canada], SD Bioline HIV 1/2 3.0 [SD Bioline; Standard Diagnostics, South Korea], and
First Response HIV Card Test1-2.O [First Response; PMC, India]) and two simple confirmatory assays
(ImmunoComb II HIV 1&2 CombFirm [ImmunoComb Combfirm; Orgenics, Alere, Israel] and Geenius HIV
1/2 confirmatory assay [Geenius; Bio-Rad, USA]) were performed at ITM on all collected plasma samples
from the six study sites, as reported elsewhere (14). All tests were performed by six trained laboratory
technicians. Each test was read by two technicians, each of whom was blind to the results reported by
the other reader and to the reference standard result. When the two readers gave discordant results, a
third reader was consulted to resolve the discrepancy. The details of the tests, as well as their
performance per origin of specimens in our evaluation, are presented elsewhere (14).

Simulated algorithms. Results of the RDTs performed at ITM were used to construct simulated
algorithms using the WHO-recommended testing strategies for high (�5%)-prevalence and low (�5%)-
prevalence settings, as described for Fig. 1A and B. We could not perform simulations of the repetition
of the tests for discordant RDT1� RDT2� results or retest 14 days later, as recommended by WHO. All
simulations used RDT Determine as the first test. For RDT2 and RDT3, we selected all assays that met
WHO recommendations, i.e., sensitivity of �99% and specificity of �99%, based on their individual
performance estimates, compared to the reference algorithm, per origin of specimens (14). For sites
where fewer than two tests met these criteria, we expanded the criteria to tests that had a specificity
estimate of �98% or �96%. We also ensured that assays RDT2 and RDT3 had higher specificity than
RDT1 in all the algorithms simulated here.

In addition, we simulated a testing strategy using an RDT as a screening test, followed by a simple
confirmatory assay (Fig. 1C). For the screening test, we used all RDTs that met the WHO recommenda-
tions for the first assay, i.e., sensitivity of �99% and specificity of �98%.

Statistical analysis. STATA version 13.1 (StataCorp, College Station, Texas, USA) was used to carry
out data analysis.

As for any performance evaluation, the results of the simulated algorithms were compared to those
of the reference algorithm, considered the gold standard. We performed an inverse-probability weighted
analysis to adjust for the initial sampling strategy, which underrepresented samples classified as negative
by the onsite algorithm. For each participant, the weight was calculated as the inverse of the probability
of inclusion in the study, i.e., as the total number of clients with similar onsite results during the study
period divided by the number of included participants with similar results.

Since all tests included in this evaluation were antibody tests and were not expected to detect acute
infections, we excluded samples classified as acute infections by the reference algorithm, i.e., positive
with a fourth-generation EIA, negative or indeterminate with LIA, and positive with the antigen test
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(Fig. 1). We also excluded from all analyses samples with indeterminate results by the reference
algorithm. Samples with an inconclusive result by a specific simulated algorithm were excluded from the
estimates of sensitivity and specificity and predictive values of that specific algorithm, and their number
and proportion are reported separately.

Ethics. The study was approved by the Médecins sans Frontières (MSF) Ethical Review Board and by
ethics committees in the five countries where the samples were collected. All participants provided
written informed consent.
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