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Evaluation of whole genome 
amplification and bioinformatic 
methods for the characterization 
of Leishmania genomes at a single 
cell level
Hideo Imamura1,4, Pieter Monsieurs1,4, Marlene Jara1, Mandy Sanders2, Ilse Maes1, 
Manu Vanaerschot1, Matthew Berriman2, James A. Cotton2, Jean‑Claude Dujardin1,3* & 
Malgorzata A. Domagalska1*

Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. 
First, the performances of two commercially available kits for Whole Genome Amplification (WGA), 
PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their 
ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here 
that the choice of WGA method should be determined by the planned downstream genetic analysis, 
PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison 
allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was 
shown to be the preferred method for studying single cell aneuploidy, this method was applied in a 
second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting 
(FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. 
A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two 
different minor karyotypes were observed in the other cells. Our method thus allowed the detection of 
aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-
throughput single cell genomic methods.

Leishmania are unicellular protozoan parasites belonging to the family Trypanosomatidae1 and causing a spec-
trum of diseases in tropical and sub-tropical regions, with an incidence estimated at 1.6 million cases per year2. 
The parasite has a dimorphic life cycle: extracellular flagellated promastigotes in the sand fly vector and intra-
cellular amastigotes in macrophages of the vertebrate host. Leishmania have unique genetic and molecular 
properties that distinguish them from other unicellular and multicellular eukaryotes. Among others, there is no 
transcription regulation at initiation through promoters. Instead, genes are organized in long arrays of polycis-
tronic units that are transcribed together, then trans-spliced and polyadenylated, and their expression is regu-
lated post-transcriptionally3. In this context, gene dosage represents a straightforward strategy for the parasite 
to modify the expression of genes of interest4. This can occur through different mechanisms, like expansion/
contraction of tandem arrays, episomal amplifications and aneuploidy5.

We previously sequenced the genomes of 204 cultivated clinical isolates of L. donovani and found aneuploidy 
in all of them, often affecting half of the 36 chromosomes6. Experimental evolution studies suggest that ane-
uploidy changes constitute an adaptive mechanism to environmental changes like those occurring during the 
life cycle7 or those associated with drug pressure8. In contrast to many organisms where it can be deleterious, 
aneuploidy thus appears to be crucial in Leishmania. Analyses of aneuploidy at individual promastigote cell level 
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by FISH revealed an additional dimension, i.e. the concept of mosaic aneuploidy: the tested chromosomes were 
present in two or more somy states (from monosomic to tetrasomic), varying between cells in a clonal line, so 
that the karyotype varies from cell to cell9. Mosaic aneuploidy could originate from segregation defects, but the 
currently favored hypothesis is a defect in regulation of chromosome replication10.

So far, mosaic aneuploidy was only studied for a few Leishmania chromosomes, and these pioneering FISH-
based studies should be complemented and refined by single cell genomic methods. A range of different methods 
exist, in which cell- or nucleus-sorting is coupled with whole genome amplification (WGA) and high-throughput 
sequencing11. Single cell genomics is well established in human genetics and cancer research among others12, 
but it constitutes an emerging field in parasitology, with a few published studies in parasites like Plasmodium13 
or Cryptosporidium14, never -to our knowledge- in Leishmania and other Trypanosomatids. We report here the 
first study on single cell genomics in Leishmania. In this pilot study, we first compared the performances of two 
WGA methods on their ability to preserve specific genetic variations, including aneuploidy levels and SNPs, 
using a dilution series of Leishmania cells. Alongside the assessment of both methods to detect aneuploidy and 
SNPs at the single cell level, this comparison allowed us to evaluate and optimize corresponding bioinformatic 
methods. The PicoPLEX approach was more adequate to assess chromosome number and we applied it to study 
aneuploidy of single cells sorted by fluorescence activated cell sorting (FACS). This allowed us to distinguish the 
dominating karyotype from minor ones at the single cell level.

Results
Genome coverage and base accuracy.  In a first part of the study, we used a series of samples with 
decreasing numbers of cells (from 1,000 to 10) of L. donovani BPK275 to compare the performance of RepliG 
and PicoPLEX WGA kits and optimize the downstream bioinformatic protocols. Illumina sequencing of the 
RepliG and PicoPLEX samples returned 222 million and 111 million 100 bp paired-end reads respectively. The 
average depth for RepliG was significantly higher than that of PicoPLEX. Specifically, for the five RepliG sam-
ples, the total number of reads was 222 million and 96.2% of the reads were mapped to the L. donovani BPK282 
reference, resulting in average depth of 17.1 ± 14.7. For the five PicoPLEX samples, the total number of reads was 
111 million and 41.1% of the reads were mapped, resulting in average depth 3.4 ± 2.4. (Supplementary data 1, 
Table S1). As somy calculation for RepliG_10 sample was not successful due to uneven sequencing depth result-
ing in chromosomes with almost no coverage, this sample was omitted in downstream processing.

In order to make an unbiased comparison on the genome coverage provided by both methods, all sequencing 
data sets were first subsampled to the number of reads from the sample with the lowest sequencing yield (i.e. the 
PicoPLEX sample starting from 10 cells, containing almost 16 million reads). When comparing the fraction of 
the genome covered by at least one read between RepliG and PicoPLEX, the former one was only slightly higher: 
the average ratio of those genome covering fraction for 1,000, 100, 50 and 25 cells was 1.07 ± 0.05 (standard 
error of the ratios, Supplementary Fig. S1). When considering the fraction of the genome covered by at least 
ten reads, this ratio RepliG /PicoPLEX increased to 1.53 ± 0.41 for these same samples. Overall a better genome 
coverage was thus achieved with RepliG than with PicoPLEX, as visualized in the Manhattan depth plots (Sup-
plementary data 2). This higher genome coverage is due to the fact that on average a higher percentage of reads 
is mapping back to the reference genome for RepliG (96.2%) compared to PicoPLEX (41.1%). Main reason for 
this large difference in mapping percentage is the presence of a PicoPLEX related adapter sequence (between 16 
and 41% of the reads), which could not be efficiently trimmed off. As those reads will not map to the reference, 
or will be filtered out due to a low mapping quality score, they will not have an impact on the further results in 
this work. However, when calculating the normalized standard deviation on the read depth – an indicator for 
evenness of coverage – PicoPLEX shows a lower variation (Supplementary data 1, Table S1): when comparing 
RepliG with PicoPLEX, the average ratio of those normalized standard deviations for 1,000, 100, 50 and 25 cells 
was 1.79 ± 0.16 (standard error). This trend can be confirmed by the lower Read Count Variation of PicoPLEX 
(see Methods). With the exception of the 1,000 cells sample where both methods show a similar value, the Read 
Count Variation is dramatically higher for RepliG compared to PicoPLEX, indicating a more even read coverage 
using the latter one.

The third sequence feature comparing both WGA methods was the base accuracy, which was measured by 
the allele frequency difference between sequence derived from a given number of cells and the control bulk DNA 
sample (the BPK275 control). Despite the fact that this strain is different from the BPK282 strain used to con-
struct the reference genome sequence, the high genetic similarity between both strains (only 43 SNPs) ascertains 
that SNPs will not affect the base accuracy interpretation. Furthermore, each dataset was subsampled to prevent 
the influence of sequencing depth on the SNP prediction performance. Overall, the base accuracy was higher in 
RepliG samples than in PicoPLEX ones (Fig. 1). The base error rates were 16.1, 9.5, 5.5, 5.1 and 4.4 fold higher 
in PicoPLEX than RepliG at cell numbers of 1,000, 100, 50 and 25, respectively.

GC bias and read depth.  Both WGA methods here used were reported to be highly affected by GC con-
tent in terms of read depth distribution15–17. The GC content across the different chromosomes is expected to be 
uniform, but we found a strong negative correlation between the GC content and length of chromosomes in L. 
donovani BPK282 (r2 = 0.586, p value: 5.47e−8, Supplementary Fig. S2 A-B) and L. braziliensis M2904 (r2 = 0.566, 
p value 1.89e−7, Supplementary Fig.  S2 C-D). This correlation was absent in the genomes of Plasmodium, 
Cryptosporidium, Trypanosoma cruzi, Giardia species deposited in EupathDB (https​://eupat​hdb.org/eupat​hdb/).

Lowess (locally weighted scatterplot smoothing) curves were calculated for the different samples to assess the 
effect of GC bias on read depth. Normalized depth only moderately depends on the GC content in the BPK275 
control, resulting in a straight line with minimal slope (ANOVA on regression slope p value < 1e−15, Tukey’s 
post-hoc between BPK275 control and the closest regression line (PicoPLEX_1000) ) value < 1e−06). However, 

https://eupathdb.org/eupathdb/


3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15043  | https://doi.org/10.1038/s41598-020-71882-2

www.nature.com/scientificreports/

the effect of GC content is more pronounced in the amplified samples, with a stronger bias for RepliG treated 
samples than for PicoPLEX treated ones (Fig. 2).

Somy determination.  Boxplots were used to visualize somy values and their variation in the different sam-
ples, with and without GC correction, as described in the Methods section. The somy values of the BPK275 con-
trol had a negligible depth variability (Supplementary Fig. 3A) and the corresponding somy values corrected for 
GC bias were nearly identical to the values without GC correction for this control (Supplementary Fig. S4 A). For 
the RepliG samples, the boxplots suggest a high variability on the somy values (Supplementary Fig. 3 B). GC cor-
rection brings the somy values closer to those of the BPK275 control (Supplementary Fig. 4B). However, somy 
values were still imprecise, as characterized by the average somy deviation (ASD, ranging from 0.420 to 0.637, 
average = 0.57) and the somy difference count (SDC, ranging from 13 to 21, average = 17.80) as shown in Table 1. 
In contrast, the PicoPLEX samples showed smaller variation in somy values compared to RepliG (Supplemen-
tary Fig. 3C). After GC bias correction for these samples, somy values became closer to those of the control (Sup-
plementary Fig. 4C), which is reflected in an ASD value ranging between 0.299 and 0.418 (average = 0.28), and a 
SDC value ranging from 2 to 11, average = 6.00 as shown in Table 1. The graphical summary of the ASD for each 
sample with and without GC bias correction is given in Fig. 3. It shows (i) the lower somy deviation in PicoPLEX 
samples (Mann–Whitney U = 0, ) value = 4.05E−03) when compared to RepliG samples and (ii) the decrease in 
somy deviations after the GC correction is statistically significant for RepliG samples (Mann–Whitney U = 0, p 
value = 6.09E−03) but not for PicoPLEX samples (Mann–Whitney U = 13, p value = 2.36E−01). Since PicoPLEX 
treated samples gave the most accurate somy estimates, this approach was chosen for genome amplification for 
single cell sequencing.

Single cell genome sequencing.  Based on more even genome coverage combined with a more accurate 
prediction of the real somy values in the above described experiments, we concluded that PicoPLEX is more ade-
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Figure 1.   Base accuracy of the RepliG and PicoPLEX BPK275 samples. Genome equivalents are shown along 
the x-axis. The y-axis represents the percentage of the bases with the given classifications i.e. the alternative allele 
frequency of the detected SNPs.
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Figure 4.   Impact of GC content on sequencing depth in the genome sequence from (A) PER094 control, (B) 
and (C) a PicoPLEX single cell sample with even depth and uneven depth, respectively. The red lines represent 
the Lowess curves, the grey lines represent linear regression curves, the top and right histograms represent 
the histograms for the GC content (GC) and the normalized depth (ND), respectively. PD stands probability 
density.

Table 1.   Somy estimation in RepliG and PicoPLEX BPK275 samples, without and with GC bias correction. 
ASD (average somy deviation) between a sample derived from the respective cell number (ranging from 
1,000 to 10) and BPK275 control and corresponding standard deviation. For somy difference count (SDC), we 
counted in each sample the number of chromosomes showing a somy value difference > 0.5 in comparison to 
BPK275 control. The average values were summarized at the bottom of the table.

Cell

Without GC correction With GC correction

ASD std SDC ASD std SDC

RepliG_1000 0.73 0.50 20 0.42 0.31 13

RepliG_100 0.88 0.59 21 0.57 0.38 18

RepliG_50 0.99 0.59 28 0.59 0.40 19

RepliG_25 1.06 0.76 27 0.64 0.52 18

PicoPLEX_1000 0.28 0.30 4 0.30 0.26 8

PicoPLEX_100 0.30 0.31 7 0.29 0.25 7

PicoPLEX_50 0.26 0.26 5 0.16 0.16 2

PicoPLEX_25 0.32 0.31 6 0.21 0.19 3

PicoPLEX_10 0.62 0.56 20 0.42 0.36 11

ave_RepliG 0.92 0.61 24.00 0.56 0.40 17.00

ave_PicoPLEX 0.36 0.35 8.40 0.28 0.24 6.20
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quate than RepliG to accurately predict aneuploidy in single cells. To test this in real-life single cell applications, 
we applied this method to a line derived from another strain, L. braziliensis PER094, which is characterized by 
a much higher degree of heterozygosity with 57,402 heterozygous SNPs than the previously used L. donovani 
BPK275 with only 43 heterozygous SNPs. This increased number of heterozygous SNPs is essential for allele 
frequency analyses (see below). Sorting of individual cells of the line PER094 GFP was made by FACS using a 
GFP fluorescent L. braziliensis strain, as described in the Methods section. Two batches of cells were generated, 
respectively called PER094a (25 cells) and b (22 cells), each of them amplified and sequenced independently. For 
the batch of 25 PER094a cells, the total number of 151 bp paired-end reads was 183.2 million, of which 13.3% 
could be mapped to the L. braziliensis M2904 reference genome, resulting in average depth 2.46 ± 4.62. Similarly, 
for the set of 22 PER094b PicoPLEX samples, 188.9 million 151 bp paired-end reads were obtained of which 
25.0% of the reads could be mapped to the reference genome, resulting in average depth of 9.4 ± 10.5. All the 
mapping statistics of total number of reads, mapped reads and the read depth statistics for both sets of PER094 
samples were given in Supplementary data 1 (Table S2). General depth trends for PER094a and b samples could 
be seen in Manhattan depth plots (Supplementary data 3 and 4).

For some samples, mapping percentages are very low, which can be explained by a combination of three 
factors: 1) presence of a PicoPLEX specific adapter which hampers proper alignment to the reference genome 
(fraction of reads with adapter varying between 33.80% and 56.87%), 2) Low Phred quality score of the sequenc-
ing reads, where around 40% of the samples shows a significant drop in Phred quality score toward the 3′ end of 
the read. 3) contamination of the FACS instrument with human DNA, which causes between 2.42% and 48.63% 
(average of 17.59%) of the sequencing reads to be of human origin.

Similar to the BPK275 control, the Lowess approach was used to assess the effect of GC bias on the read depth. 
It only showed a very limited effect for undiluted and unamplified DNA of PER094 (further called PER094 con-
trol) (Fig. 4A). Remarkably, the PER094 control Lowess fit showed an opposite trend compared to the BPK275 
control, the former showing a positive trend with increasing GC content. However, for L. braziliensis single cells 
the GC content had a clear impact on the read depth, represented by the negative slopes as shown in Fig. 4B,C 
for two single cells. Where the normalized depth histogram shows a normal distribution for the even depth case, 
the depth histogram of the uneven samples shows a peak at a normalized depth of zero, combined with a long tail 
distribution towards higher normalized depths, as can be seen in the dot plot and the right side depth histogram 
(Fig. 4). This visual inspection lead to an ad-hoc cut-off of normalized standard deviation of read depth of 0.31, 
to distinguish between even and uneven depth samples. The Lowess curves of all the single cell samples were 
shown in Supplementary Fig. 5A,B. Curves from samples with even depth are clearly distinguishable from the 
ones with uneven depth. Moreover, the trend of those even depth curves is comparable to the trend observed in 
the L. donovani BPK275 PicoPLEX samples.

In a next stage, boxplots were used to visualize the technical variability in the sequencing depth and somy 
estimates for all samples (Supplementary Figs. 6 and 7). Variability in somy values for the PER094 control, was 
very limited. For the single cells, variability was higher but this was more pronounced for samples with uneven 
depth while somy values could be accurately determined for samples with even depth: a single dominant karyo-
type (called kar1) was observed in 25 single cells and it was characterized by the same trisomy of chromosomes 11 
and 25 and tetrasomy of chromosome 31, while all other chromosomes were disomic. This dominant karyotype 
matched perfectly with the ‘average’ karyotype observed in the PER094 control. In a few other single cells with 
even depth, divergent karyotypes were encountered: (i) kar2, with a disomic (instead of trisomic) chromosome 
25 in PER094b-sc2 and -sc9 and (ii) kar3, with monosomic chromosome 1 (instead of disomic) in PER094a-sc2 
(Supplementary Figs. 6, 7 and 8).

In a last step, we estimated the impact of GC bias correction on somy estimation. Among the even depth 
samples of PER094a and PER094b batches, GC correction could significantly lower the ASD value from 0.22 to 
0.17 for PER094a cells (p value 6.08E−05) and from 0.27 to 0.16 for PER094b cells (p value 9.01E−05). The same 
trend was observed for the SDC value (2.14 and 4.4 to 1.0 and 1.6 for PER094a and PER094b cells respectively). 
(Table 2, Fig. 5A and B). In contrast, values observed in uneven depth samples were much higher, and the effect 
of GC correction was negligible. The overall impact of GC correction on these samples was illustrated in Sup-
plementary data 5 and 6.

Analysis of somy variation with allele frequency distribution.  Somy of a given chromosome can 
also be predicted by the allele frequency distribution, if heterozygosity is sufficiently high18, which is the case for 
PER094. For chromosome 1, we compared the allele frequency patterns of PER094a_sc2 and PER094b_sc15, 
respectively shown to be monosomic and disomic by methods based on read depth (see above). We observed a 
typical normally distributed allele frequency of a disomic chromosome shown in PER094 control. In PER094a_
sc2, however, we observed a skewed allele distribution for chromosome 1 with clear allele frequency shift toward 
0 or 1 (Supplementary Fig. 9A): this was not observed for other chromosomes of that cell, hence this decrease 
of heterozygosity fits with monosomy of chromosome 1 in PER094a_sc2. In contrast, the chromosome 1 of 
PER094b_sc15 shows a disomic allele frequency pattern, leveled due to allele frequency dropout, common to 
single cell samples (Supplementary Fig. 9B). In the case of chromosome 25, the distribution of allele frequency 
is clearly bi-modal in PER094 control, which is a typical alternative allele frequency pattern of a trisomic chro-
mosome in the bulk sequence (Supplementary Fig. 9C). Similarly, a pattern with two overlapping peaks was 
detected in chromosome 25 of PER094b_sc15, which is compatible with trisomy (Supplementary Fig. 9D). In 
contrast, the chromosome 25 of PER094b_sc9 (Supplementary Fig. 9C) showed a flat distribution similar to 
disomic chromosome 1 of PER094b_sc15 (Supplementary Fig. 9B).

The atypical allele frequency distribution shown above could be due to allele dropout. To verify this, we 
specifically measured the average pairwise base differences among a subset of PER094b PicoPLEX samples 
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(PER094b_sc20, sc15, sc2, sc13, sc9, sc5, sc16). When sites with zero depth were excluded, the average pairwise 
base difference at 26,959 heterozygous SNP sites was 0.303 ± 0.020 and the corresponding pairwise difference 
between two bulk PER094 controls was 0.020. When missing depth was treated as a base mismatch, the average 
pairwise base difference at 57,402 heterozygous SNP sites was 0.349 ± 0.012 and the corresponding pairwise dif-
ference between two bulk PER094 controls was 0.019. This shows that allele dropout was quite high in PicoPLEX 
single cell samples.

0.0

0.2

0.4

0.6

PER09
4a

_s
c2

0

PER09
4a

_s
c9

PER09
4a

_s
c2

4

PER09
4a

_s
c8

PER09
4a

_s
c1

9

PER09
4a

_s
c1

4

PER09
4a

_s
c5

PER09
4a

_s
c1

3

PER09
4a

_s
c1

8

PER09
4a

_s
c1

5

PER09
4a

_s
c2

1

PER09
4a

_s
c2

3

PER09
4a

_s
c6

PER09
4a

_s
c7

PER09
4a

_s
c1

1

PER09
4a

_s
c2

PER09
4a

_s
c1

0

A
S

D

type

raw
GC corrected

A

0.00

0.25

0.50

PER09
4b

_s
c1

7

PER09
4b

_s
c7

PER09
4b

_s
c1

PER09
4b

_s
c1

5

PER09
4b

_s
c1

3

PER09
4b

_s
c1

2

PER09
4b

_s
c1

9

PER09
4b

_s
c1

6

PER09
4b

_s
c2

0

PER09
4b

_s
c9

PER09
4b

_s
c5

PER09
4b

_s
c3

PER09
4b

_s
c4

PER09
4b

_s
c2

PER09
4b

_s
c2

2

A
S

D

type

raw
GC corrected

B
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ASD std SDC ASD std SDC
PER094a_sc19 0.234 0.147 2 0.148 0.093 0
PER094a_sc20 0.175 0.130 1 0.121 0.104 0
PER094a_sc8 0.191 0.129 2 0.143 0.111 0
PER094a_sc9 0.191 0.145 1 0.134 0.116 1
PER094a_sc6 0.235 0.159 2 0.179 0.122 1
PER094a_sc24 0.190 0.155 2 0.141 0.124 1
PER094a_sc5 0.214 0.149 3 0.155 0.125 0
PER094a_sc18 0.219 0.157 2 0.159 0.127 0
PER094a_sc13 0.215 0.142 2 0.157 0.128 0
PER094a_sc14 0.213 0.158 2 0.153 0.135 1
PER094a_sc15 0.214 0.161 3 0.169 0.142 2
PER094a_sc23 0.228 0.151 2 0.175 0.142 2
PER094a_sc21 0.208 0.156 1 0.172 0.143 2
PER094a_sc7 0.231 0.178 3 0.192 0.169 3
PER094a_sc11 0.228 0.182 3 0.203 0.191 2
PER094a_sc2 0.291 0.293 5 0.276 0.252 4
PER094a_sc10 0.349 0.402 7 0.321 0.424 6
PER094a_sc17 2.508 1.622 33 1.795 0.833 32
PER094a_sc16 2.203 1.412 32 2.202 1.413 32
PER094a_sc12 0.787 2.203 8 0.742 2.240 6
PER094a_sc25 2.695 5.016 14 2.695 5.095 11
PER094a_sc3 1.510 6.154 10 1.446 5.872 9
PER094a_sc1 1.760 6.680 8 1.760 6.680 8
PER094a_sc22 3.646 10.454 11 3.646 10.454 11
PER094a_sc4 4.872 14.477 11 4.921 14.666 11
ave_pass 0.217 0.162 2.3 0.167 0.139 1.2
ave_fail 2.259 5.380 14.9 2.170 5.297 14.0

cell
without GC correction with GC correction

Continued
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Discussion
In the present paper, we report the first study – to our knowledge – of the genomes of single Leishmania cells. 
Using L. donovani as model, we showed in a first step that the choice of WGA method should be determined 
by the planned downstream genetic analysis and that PicoPLEX and RepliG are more suitable for aneuploidy 
and SNP calling, respectively, as expected from previous work11. Given our interest in aneuploidy6,7,19 and 
mosaicism20, we evaluated and developed bioinformatic methods to assess the somy for each chromosome 
when only limited sequencing data is available, thereby taking into account and correcting for the GC-bias. In 
a second step, we used the PicoPLEX approach to sequence the genome of FACS-sorted single cells and deter-
mined their aneuploidy by the computational pipeline optimized in the first step. For this experiment, we used 
L. braziliensis as model, as its higher heterozygosity should permit to study allele frequency distribution, which 
is an complementary inferential method for somy estimation often applied in bulk sequencing18. We successfully 
called somy of all 35 chromosomes in 28 out of the 47 single cells, detected aneuploidy mosaicism by read-depth 
based methods and subsequently validated monosomy and trisomy of some chromosomes based on their signa-
tory somy specific allele frequency distribution.

Bioinformatic pipelines were optimized to handle high technical read depth variation observed throughout 
the genome because of the required amplification process of WGA. We have developed and validated on low DNA 
amounts depth normalization methods. We tested a various range of window sizes and percentiles to quantify 
sequencing depth, greatly enhancing the sensitivity and specificity for somy detection. As indicated within the 
results, there is large variation on the sequencing coverage and evenness of sequencing depth between different 
samples or cells, but window of 5 kb seems to be the optimal value when considering all samples discussed in the 
manuscript. It also appeared critical to select the lower and upper depth bin cut offs for somy estimation; accord-
ingly, these parameters must be optimized for each data set separately. In general we found that the combination 
of higher read depth and even read distribution always led to improved somy estimation based on depth and 

ASD std SDC ASD std SDC
PER094b_sc17 0 151 0.133 1 0.102 0.105 1
PER094b_sc7 0.183 0.152 2 0.132 0.120 1
PER094b_sc1 0.190 0.148 2 0.134 0.121 1
PER094b_sc15 0.325 0.209 6 0.143 0.139 2
PER094b_sc13 0.327 0.209 7 0.146 0.135 1
PER094b_sc12 0.218 0.144 1 0.147 0.122 1
PER094b_sc19 0.212 0.164 1 0.161 0.140 1
PER094b_sc16 0.318 0.219 7 0.167 0.152 1
PER094b_sc20 0.348 0.237 10 0.169 0.172 2
PER094b_sc9 0.330 0.216 5 0.170 0.183 2
PER094b_sc5 0.320 0.222 6 0.188 0.153 2
PER094b_sc3 0.246 0.160 2 0.188 0.139 2
PER094b_sc4 0.201 0.179 2 0.193 0.153 3
PER094b_sc2 0.386 0.203 10 0.215 0.173 3
PER094b_sc22 0.256 0.382 5 0.258 0.418 6
PER094b_sc8 0.958 0.659 23 0.986 0.606 26
PER094b_sc10 1.481 5.473 8 1.511 5.626 9
PER094b_sc18 1.909 10.174 3 1.792 9.571 2
PER094b_sc6 7.345 16.187 10 7.296 16.173 9
PER094b_sc14 14.311 27.530 16 14.310 27.530 16
PER094b_sc11 18.400 41.837 15 19.219 43.741 14
PER094b_sc21 20.811 42.345 12 21.796 44.363 10
ave_pass 0.268 0.185 4.4 0.161 0.143 1.6
ave_fail 8.184 18.073 11.5 8.396 18.503 11.5

cell
without GC correction with GC correction

Table 2.   Estimation of somy deviation in PER094a and b single cell samples, without and with GC bias 
correction. ASD and SDC between a single cell sample and BPK094 control and corresponding standard 
deviation (see Table 1 for explanation of ASD and SDC). The single cells with even depth are shown in white and 
the single cells with uneven depth are shown in gray. At the bottom of the table, average of high quality (even 
depth, ave_pass) and low quality (uneven depth, ave_fail) are indicated. Two intermediate depth quality samples 
PER094a_sc7 and PER094a_sc11 (indicated in orange) were not included in the summary statistics.
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read allele frequency. Samples with even but low depth could still lead to accurate somy estimation. However, 
samples with higher intra-chromosomal read depth variation, regardless of its read depth size, always led to very 
poor somy accuracy. Therefore, based on those observations we advocate that quality filtering should primarily 
be focused on selecting those single cell sequencing data that have an even read depth, and only as a second and 
less important criterion look at the sequencing depth.

Previous Leishmania studies based on bulk sequencing have shown some correlation between read coverage 
depth and chromosome length7,18,21. In a previous study where we used SureSelect, a genome capture method, 
we observed the tendency that the shorter chromosomes had lower depth which resulted in more non-integer 
somy values compared to longer chromosomes in the sequencing results19. This bias was corrected using sequenc-
ing depth normalization using chromosomes with similar lengths. The observation of non-integer somy values 
in smaller chromosomes could be explained by a higher mosaicism among this size-class of chromosomes18. 
However, present study provides an alternative answer to these observations, as we found in reference genomes 
of both L. donovani and L. braziliensis a negative correlation between GC content and chromosome length. 
Interestingly, this appeared to be a Leishmania-specific feature as this GC-bias was not found in other tested 
genomes. The detection of this GC-bias has an impact for single-cell genomics of Leishmania, because WGA 
methods are reported to be particularly sensitive to GC content15–17. In our analysis, the slopes of the Lowess 
curves, used to represent the link between normalized depth and GC content were bigger in L. donovani RepliG 
samples than in PicoPLEX ones (Fig. 2). Accordingly, GC correction appears to be important for single cell 
genomics of Leishmania, but also for other species where the GC content is varying over the chromosomes like 
e.g. Leptomonas pyrrhocoris (data not shown).

In this study we sorted cells using FACS and we amplified and sequenced separately single genomes. Major 
disadvantages, previously reported to be associated with a FACS-based approach, are the high risk of contami-
nation with foreign DNA during collection process and the high cost of WGA of each sample. First, the size of 
the microbial genome is much smaller than mammalian genomes and even small fragments of this DNA will 
efficiently compete with the microbial DNA during WGA. This was clearly illustrated for bacteria22 and could 
represent an issue for Leishmania genome which is 100 fold smaller than human genome. To reduce the con-
tamination risk, we cleaned and sterilized the FACS instrument, but treatment with a DNA removing agent was 
impossible. Second, the high cost of WGA in FACS-based approaches is related to the volume of sample collec-
tion (5 µl here) and reaction (75 µl here) and this may also have an effect on the efficiency of the amplification of 
minute amounts of DNA in the sample22. In our experiments, we tested the amplified Leishmania genomes for 
presence of human DNA by qPCR of only one human gene, RPL30 (see Supplementary methods). The presence 
of this gene was detected only in few samples, and these were excluded from further studies. However, different 
degree of contamination with human DNA was still detected by WGS, but this was not found to be a critical 
factor for the somy accuracy. Indeed, a large proportion of unmapped reads did not necessarily lead to the lower 
somy calling accuracy. Reciprocally, a large proportion of mapped reads did not necessarily lead to higher somy 
calling accuracy, the latter mainly because this type of samples often showed an uneven genome coverage. Using 
automated, microfluidics- or droplet-based single cell sorting and sequencing library preparation platforms 
would greatly reduce this risk and increase reproducibility of single cell whole genome analysis. Among the 
additional advantages of these methods, we mention: 1) the volume of the reaction (a few nanoliters), decreasing 
risk of contamination and cost and increasing reaction’s efficacy; 2) the use of chips, which decreases the number 
of operations and the risk of contamination; 3) pre-staining or constructing parasites harboring a fluorescent 
marker is not needed, thus most types of unprocessed cells can be analyzed without lengthy preparation; 4) the 
high-throughput character of analyses and 5) the possibility -with some platforms- to check the number of cells 
present in each sample and sequence only the ones containing only one cell, hereby also reducing costs and 
ensuring that only individual cells are analyzed.

Despite the low number of L. braziliensis cells analysed here (28 with even depth), mosaicism could be 
detected, with 3 different karyotypes, all aneuploid: one dominant karyotype (kar1) in 25 cells and two others 
(kar2 and kar3) each one encountered in 2 and 1 cells respectively. Interestingly, kar2 and kar3 only differed 
slightly from kar1, by the somy of 1 chromosome (chr 1 and 25) respectively. Chromosome 31, shown to be tet-
rasomic in bulk sequences of all Leishmania species studied so far6,18,21 was tetrasomic too in all 28 cells analyzed 
here. Probably because of allele drop-out, rather high in PicoPLEX samples, allele frequency distribution curves 
of individual chromosomes (expected to be monomodal, bi-modal and tri-modal for disomic, trisomic and tet-
rasomic chromosomes) were atypical in single cells. However, we could detect the allele frequency signatures of 
monosomic chromosome 1 and trisomic chromosome 25 and thus validate the read-depth based somy calling 
of these chromosomes. As such, our single cell sequencing data confirm the hypothesis of mosaic aneuploidy 
which was derived based on FISH data.

This study paves the way for further single cell genomics studies in Leishmania. The FACS-based approach 
described here is of interest for in-depth analysis of genomes in a small number of cells (for instance a plate of 
96 cells), while different WGA methods should be used depending on the planned downstream genetic analysis 
(SNP, indel, CNV or aneuploidy). High-throughput analyses of single cells are needed to investigate the extent 
and dynamics of aneuploidy mosaicism in Leishmania, in both stable and variable experimental conditions. 
Therefore, microfluidics- and droplet-based platforms represent a promising alternative and several options 
exist (see recent review23).

Materials and methods
Preparation of samples for comparison of WGA methods.  The cloned line L. donovani MHOM/
NP/03/BPK275/0-Cl1821 was grown on HOMEM and harvested 20 passages after cloning. Parasites were washed 
and resuspended in PBS, to have 1,000, 100, 50, 25 and 10 promastigotes in 2 µl of PBS. For PicoPLEX (New Eng-
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land Biolabs), 2 µl of parasites were put in PCR tubes and flash-frozen in liquid nitrogen. For RepliG (Qiagen), 
2 µl of parasites + 2 µl of PBS were put in PCR tubes and flash frozen in liquid nitrogen. PicoPLEX and RepliG 
samples were then further processed according to manufacturer’s instructions. The average size of the DNA 
fragments after amplification was as expected, and differed between RepliG and PicoPLEX, being 2–100 kb and 
0.1–1 kb, respectively. DNA of each sample was purified and concentrated with Genomic DNA Clean and Con-
centrator-25 (Zymo Research) according to the manufacturer’s instructions. DNA from the same L. donovani 
line and the same batch was extracted with the QIAamp DNA Mini Kit (Qiagen) according to manufacturer’s 
instructions and used as bulk control (further called BPK275 control). Samples were sent to Wellcome Trust 
Sanger Institute for whole genome sequencing: (i) in 40 µl, with a DNA concentration ranging between 63.3 and 
91.3 ng/µl for RepliG samples, (ii) in 34 µl, with a DNA concentration ranging between 9.64 and 40.4 ng/µl for 
PicoPLEX samples and (iii) in 40 µl, with a concentration of 50.4 ng/µl for BPK275 control.

Preparation of samples for single cell analysis.  A transgenic line of L. braziliensis strain MHOM/
PE/02/PER094 with constitutive expression of the GFP reporter integrated within the ribosomal locus was gen-
erated as previously reported elsewhere24. After transfection and two weeks of selection a clonal/isogenic line 
was derived by the micro drop method. The resulting GFP fluorescent line PER094-GFP-Cl2 (further called 
PER094-GFP) was used to sort single cells within 96 well plates with the BD FACSAria II with a 85 μM nozzle 
and 45 PSI. Briefly, 2 ml of parasites were washed with 10 mL of PBS. Subsequently, the pellet was resuspended 
in another 10 mL of PBS and gently passed through a 5 μM filter (pipetting and gravity). The recovered cells 
were concentrated by centrifugation (1,500 g, 5 min) and brought to a new suspension of 20 × 106 parasites/
mL in medium M199 + 100 units/mL of penicillin and 100 μg/mL of streptomycin. For sorting the single cells, 
gates were selected by using the side and forward scatter plots. A non-GFP wild type was included to establish 
the autofluorescence values and the gate corresponding to GFP positive cells. The single cells were sorted in a 
96 well plate (containing 5 µL of lysis buffer) and immediately placed on dry ice until the next step. In parallel, 
DNA from the same PER094-GFP line and the same batch as the one used for single cells was extracted with 
the QIAamp DNA Mini Kit (Qiagen) according to manufacturer’s instructions and used as bulk control (further 
called PER094 control).

Two sorting experiments were made and generated 2 batches of 39 and 40 single cells. A quality control was 
introduced before further selecting cells for WGA and WGS. DNA contained in each well was amplified by 4 
qPCR assays targeting (i) kDNA, 18 s rDNA and G6PD to assess for the presence of good quality Leishmania 
DNA and (ii) RPL30 to assess for the presence of possible human DNA contamination (supplementary methods). 
After this process, the 2 batches resulted in 25 and 22 cells, further called PER094a and PER094b, respectively.

The performance of the cell sorter was also evaluated by sorting fluorescent beads (10 μM, Beckman Coulter) 
within 384 plates (optically clear flat bottom, Perkin Elmer). The presence of only one bead was corroborated 
by visualization of the whole well with a confocal microscope (Zeiss LSM 700). The percentage of wells with 
only one bead was 78.8% while the percentage of wells without or with more than one bead were 20.8 and 0.4% 
respectively.

Whole genome sequencing.  For Illumina sequencing genomic DNA was sheared into 400–600 base pair 
(bp) fragments by focused ultrasonication (Covaris Adaptive Focused Acoustics technology, AFA Inc., Woburn, 
USA).

Amplification-free Illumina libraries were prepared25, for PER094 samples 150 bp paired-end reads were 
generated on the Illumina HiSeq X, whilst for BPK275 samples 10% PhiX DNA was added to the library pool 
to increase complexity then 100 bp paired-end reads were generated on the Illumina HiSeq 2,500 following the 
manufacturer’s standard sequencing protocols26.

DNA read mapping, SNP calling.  Paired-end reads from the RepliG and PicoPLEX samples of L. dono-
vani and from BPK275 control were mapped to the improved reference L. donovani genome LdBPKv27 (avail-
able at ftp://ftp.sange​r.ac.uk/pub/proje​ct/patho​gens/Leish​mania​/donov​ani/LdBPK​PAC20​16bet​a/) using Smalt 
v7.4 (https​://www.sange​r.ac.uk/scien​ce/tools​/smalt​-0). Similarly for L. braziliensis, paired-end reads from 22 
PER094b and 25 PER094a FACS-sorted single cells and the PER094 control were mapped to the L. braziliensis 
M2904 reference genome, which was recently improved based on PacBio SMRT sequencing. The parameters 
used in Smalt were described in the previous studies7,19, which – apart from the default settings – implies activat-
ing exhaustive search for optimal alignments (-x), random mapping of multiple hit reads (-r 3), and requiring at 
least 80% of the nucleotides in the read being a perfect match (-y 0.80). Picard v1.85 (https​://broad​insti​tute.githu​
b.io/picar​d/) was used for marking duplicated reads. For calculation of the genome coverage for the different 
samples, samtools was used to subsample all data to the number of reads obtained for the sample with the lowest 
yield. To assess the evenness of genome coverage, the variation on the genome coverage within 5 kb windows 
was calculated using the normalized standard deviation (also called coefficient of variation), i.e. the standard 
deviation of the sequencing depth within 5 kb windows divided by the average sequencing depth calculated over 
all 5 kb windows. The read count variation was calculated as specified using 5 kb windows27.

For SNP calling for the evaluation of the accuracy of sequences derived from amplified and bulk DNA, we 
used the population SNP calling mode of UnifiedGenotyper in Genome Analysis Toolkit v3.4, with the SNP cut 
off (GATK QUAL score) (i) 1,500 for BPK275 samples and (ii) 2000 for PER094 samples (GATK: https​://softw​
are.broad​insti​tute.org/gatk/)28. The SNP cut off for L. braziliensis was higher since more samples were used to 
call SNPs. The main goal of the SNP analysis in this study was to evaluate base accuracy and the base recovery 
rate, i.e. how many bases would be covered by at least one read. Therefore, no lower nor higher depth cut off was 
imposed in the population SNP calling. In L. donovani chr22, the base positions between position 736,224 and 

ftp://ftp.sanger.ac.uk/pub/project/pathogens/Leishmania/donovani/LdBPKPAC2016beta/
https://www.sanger.ac.uk/science/tools/smalt-0
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/)
https://software.broadinstitute.org/gatk/)
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the end of that chromosome were excluded from the SNP calling as this region might be an erroneous region 
in the genome reference sequence, since many SNPs are also detected in other BPK275 related whole genome 
sequencing data (data not shown) .

GC content and GC bias correction.  With WGA methods like RepliG and PicoPLEX, normalized depth 
is reported to be affected by GC content bias15–17. Previous Leishmania studies based on bulk cell populations 
have suggested a correlation between read coverage depth and chromosome length7,21. However, the mechanism 
of depth bias was not fully understood. Neighboring chromosome normalization7 was used to assess this effect. 
However, this will not be accurate for samples in which the variability of chromosome copy number is irregular 
and skewed. First the GC content was measured in 5 kb windows across each chromosome. To evaluate the 
impact of GC content bias on the current data sets, we selected the long disomic chromosomes 28, 29, 30, 32 and 
34 of L. donovani and L. braziliensis. These disomic chromosomes were used to avoid the depth difference due to 
aneuploidy. For each sample, we fitted a Lowess (Locally Weighted Scatterplot Smoothing) curve in terms of the 
GC content and normalized depth, using a Python package statsmodels v0.9.0 (https​://githu​b.com/stats​model​s/
stats​model​s). Depths greater than the 95 percentile were marked as outliers and removed.

In the next step this Lowess curve is used to correct the somy value for each chromosome separately. Based 
on the average GC content of a chromosome, its somy value is divided by the value of the Lowess curve for that 
specific GC percentage using a lookup hash table approach. In general, the Lowess curves properly represented 
the relationship between the GC content and depth within a GC content range between 55 and 65% for most 
of the high-quality samples. As the average GC content of each chromosome was between 56.2% and 61.5% for 
both L. braziliensis and L. donovani genomes, accurate GC correction could be guaranteed. Finally, somy values 
were renormalized using a median somy value after the initial GC correction to have the median somy value over 
all chromosomes close to 2. The method used here was analogous to the GC bias correction methods described 
in the previous studies29,30. Somy values with and without the GC correction were visualized with Gnuplot31.

Somy estimation.  WGA methods are known to produce highly variable depth coverage15,17. To mitigate 
skewed, uneven read distribution7, the chromosome median depth was calculated as a trimmed median of mean 
depths for 5000 bp bins, where bins with a depth less than the 10th percentile or greater than 90th percentile 
were removed. Somy values are visualized using boxplots as implemented using Matplotlib32. To assess depth 
across all the chromosomes, Manhattan plots across all the chromosomes were created based on median depth 
of 5000 bp windows. The upper limit of a Manhattan plot was set to be twice the value of a 98 percentile to focus 
on the informative range.

Somy range.  The range of monosomy, disomy, trisomy, tetrasomy, and pentasomy was defined to be the full 
cell-normalized chromosome depth or S-value: S < 1.5, 1.5 ≤ S < 2.5, 2.5 ≤ S < 3.5, 3.5 ≤ S < 4.5, and 4.5 ≤ S < 5.5, 
respectively7. However, single cell sequencing depth can be highly variable among cells unlike in bulk sequenc-
ing. To overcome this technical depth variability among individual cells and to characterize somy variability 
clearly, we defined the Average Somy Deviation (ASD): this is defined as the average difference between the 
calculated somy value and the true (integer) somy value, with the latter one calculated based on the bulk control 
sample. Similarly, the somy difference count (SDC) is defined as the number of chromosomes where the absolute 
difference between the predicted somy value and the true somy value is greater than 0.5 .

When defining a new karyotype (i.e. a cell having for at least one chromosome a somy value deviating from 
the somy value based on the bulk genome sequencing), a more stringent criterion is applied. First, the median 
somy value per chromosome is calculated over all cells with an even depth. Next, for each chromosome for each 
cell the absolute difference with this median value is calculated. If this absolute difference is higher than one, the 
cell is defined as having an aberrant karyotype.

Visualization of pairwise allele frequency difference.  Alternative base allele frequencies (allele fre-
quencies) of variable sites were extracted from the GATK SNP vcf files. To quantify base recovery rate, a gap 
was considered to be homozygous mismatch of allele difference of one, instead of discarding missing sites or 
imputing the bases. For L. braziliensis single cells, we were particularly interested in identifying allele frequency 
shifts due amplification artifacts. Therefore we first identified high quality heterozygous sites in the PER094b and 
PER094a bulk samples, and only assessed allele frequency differences. We did not take this approach for the L. 
donovani samples since there are not enough heterozygous SNPs in BPK275. An allele frequency distribution of 
two samples was visualized with an allele frequency dot plot where the x- and y-coordinates represented their 
alternative allele frequencies, and their corresponding histogram was also given along each axis (Supplementary 
Fig. 9).

Data availability
Sequencing data are available in ENA (European Nucleotide Archive) study PRJEB8793.
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