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Abstract Protozoan parasites of the Leishmania donovani complex – L. donovani and L.

infantum – cause the fatal disease visceral leishmaniasis. We present the first comprehensive

genome-wide global study, with 151 cultured field isolates representing most of the geographical

distribution. L. donovani isolates separated into five groups that largely coincide with geographical

origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one

globally-distributed group with little diversity. This picture is complicated by several hybrid

lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting

different recombination histories. We characterise chromosome-specific patterns of aneuploidy and

identified extensive structural variation, including known and suspected drug resistance loci. This

study reveals greater genetic diversity than suggested by geographically-focused studies, provides

a resource of genomic variation for future work and sets the scene for a new understanding of the

evolution and genetics of the Leishmania donovani complex.

Introduction
The genus Leishmania is a group of more than 20 species of protozoan parasites that cause the

neglected tropical disease leishmaniasis in humans, but also infect other mammalian hosts. Leish-

maniasis is transmitted by phlebotomine sandflies and exists in four main clinical conditions: cutane-

ous leishmaniasis (CL), seen as single and multiple cutaneous lesions; mucocutaneous leishmaniasis

(MCL), presenting in mucosal tissue; diffuse cutaneous leishmaniasis (DCL), seen as multiple nodular

Franssen et al. eLife 2020;9:e51243. DOI: https://doi.org/10.7554/eLife.51243 1 of 44

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.51243
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


cutaneous lesions covering much of the body; and visceral leishmaniasis (VL, also known as kala-

azar), affecting internal organs. Disease incidence per year is estimated at 0.9 to 1.6 million new

cases, mostly of CL, and up to 90,000 new cases per year of VL are associated with a 10% mortality

rate (Alvar et al., 2012; Burza et al., 2018). The form of the disease is largely driven by the species

of Leishmania causing the infection but is further influenced by vector biology and host factors,

importantly by host immune status (Burza et al., 2018; McCall et al., 2013). In the mammalian host,

parasites are intracellular, residing mainly in long lived macrophages. In the most severe visceral

form, parasites infect the spleen, liver, bone marrow and lymph nodes, leading to splenomegaly and

hepatomegaly. This results in a range of symptoms including frequent anaemia, thrombocytopenia

and neutropenia, and common secondary infections which are often fatal without successful treat-

ment (for review see: Rodrigues et al., 2016; Burza et al., 2018), although most infections remain

asymptomatic (Ostyn et al., 2011).

The key species responsible for VL are L. donovani and L. infantum (see reviews McCall et al.,

2013; Burza et al., 2018), which together form the L. donovani species complex. Both species

mainly cause VL, but for each species atypical cutaneous presentations are common in some foci

(reviewed in Thakur et al., 2018; for example, Guerbouj et al., 2001; Zhang et al., 2014). Post-

kala-azar dermal leishmaniasis (PKDL), is a common sequel to VL that manifests with dermatological

symptoms appearing after apparent cure of the visceral infection. PKDL is mainly seen on the Indian

subcontinent and north-eastern and eastern Africa following infections caused by L. donovani

(Zijlstra et al., 2003). L. donovani is considered to be largely anthroponotic even though the para-

sites can be encountered in animals (Bhattarai et al., 2010). In contrast, L. infantum – like most

Leishmania species – causes a zoonotic disease, where dogs are the major domestic reservoir but a

range of wild mammals can also be involved in transmission (Dı́az-Sáez et al., 2014; Quinnell and

Courtenay, 2009). Both species are widespread across the globe, with major foci in the Indian sub-

continent and East Africa for L. donovani, the Mediterranean region and the Middle East for L. infan-

tum, and China for both species (Lun et al., 2015; Lysenko, 1971; Ready, 2014). L. infantum has

also more recently spread to the New World, via European migration during the 15th or 16th Century

(Leblois et al., 2011), where it was sometimes described as a third species, L. chagasi. Leishmaniasis

caused by parasites of the L. donovani complex differs across and even within geographical locations

in the nature and severity of clinical symptoms (e.g. Guerbouj et al., 2001; Zhang et al., 2014;

Thakur et al., 2018) and in the species of phlebotomine sandflies that act as vectors

(Alemayehu and Alemayehu, 2017).

For this important human pathogen, there is a long history of interest in many aspects of the basic

biology of Leishmania, including extensive interest in epidemiology, cell biology and immunology as

well as the genetics and evolution of these parasites (e.g. Simpson et al., 2006; Quinnell and Cour-

tenay, 2009; Mougneau et al., 2011). Leishmania has two unusual genomic features that influence

its genetics, including mosaic aneuploidy and a complex and predominantly clonal life cycle. Aneu-

ploidy is the phenomenon where individual chromosomes within a cell are of different copy num-

bers, and mosaic aneuploidy is where the pattern of chromosome dosage varies between cells of a

clonal population (Bastien et al., 1990; Sterkers et al., 2011). Genome sequencing studies have

shown extensive aneuploidy in cultured Leishmania field isolates (e.g. Downing et al., 2011;

Rogers et al., 2014; Zhang et al., 2014; Imamura et al., 2016). Variation in chromosome dosage

appears to be greater in in vitro than in vivo in animal models (Dumetz et al., 2017) or human tis-

sues (Domagalska et al., 2019). However, these studies estimate average dosage of chromosomes

in a population of sequenced cells. Only a few studies have directly investigated mosaicism between

cells and these found it to be extensive both in vitro (Sterkers et al., 2011; Lachaud et al., 2014)

and in vivo (Prieto Barja et al., 2017). Reproduction was originally thought to be predominantly

clonal and this is still assumed to be the only mode of reproduction for the intracellular amastigotes

found in the mammalian host. A number of studies have shown that hybridisation can occur during

passage in the sandfly vector. This was demonstrated experimentally (e.g. Akopyants et al., 2009;

Romano et al., 2014; Inbar et al., 2019) also showing evidence of meiosis (Inbar et al., 2019) and

in field isolates through recombination-like signatures (Cotton et al., 2019; Rogers et al., 2014).

However, the incidence of sexual reproduction in natural populations is still unclear (Ramı́rez and

Llewellyn, 2014).

Despite this research, much remains unclear about the diversity, evolution and genetics of the L.

donovani species complex. Difficult and laborious isoenzyme typing (Rioux et al., 1990) dominated
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the description of Leishmania populations for at least 25 years (Schönian et al., 2011) but suffered

from a critical lack of resolution, leading to convergent signals (Jamjoom et al., 1999). More recent

typing schemes, using variation at small numbers of genetic loci (multi-locus sequence typing, MLST)

or microsatellite repeats (multi locus microsatellite typing, MLMT) improved the resolution of Leish-

mania phylogenies and enabled population genetic analyses (Gouzelou et al., 2012; Herrera et al.,

2017; Kuhls et al., 2007; Schönian et al., 2011) but are hard to compare when using different

marker sets (Schönian et al., 2011). In contrast, genome-wide polymorphism data offers much

greater resolution (Downing et al., 2011; Rogers et al., 2014), provides richer information on aneu-

ploidy and other classes of variants, that is SNPs, small indels and structural variants, and enables

insights into gene function from genome-wide studies of selection and association mapping

(Carnielli et al., 2018; Downing et al., 2011). Moreover, advances in DNA sequencing technology

together with the availability of reference genome assemblies for most of the clinically important

species (Downing et al., 2011; González-de la Fuente et al., 2019; Peacock et al., 2007;

Real et al., 2013; Rogers et al., 2011) in public databases (Aslett et al., 2010) now make it feasible

to sequence collections of isolates and determine genetic variants genome-wide. Several studies on

the L. donovani complex have applied such an approach including foci in Nepal (16 isolates,

Downing et al., 2011), Turkey (12 isolates, Rogers et al., 2014), the Indian subcontinent (204 iso-

lates, Imamura et al., 2016), Ethiopia (41 isolates from 16 patients, Zackay et al., 2018) and Brazil

(20 and 26 isolates, respectively, Teixeira et al., 2017; Carnielli et al., 2018). However, genomic

studies to date have addressed genome-wide diversity in geographically restricted regions, leaving

global genome diversity in the species complex unknown.

We present whole-genome sequence data from isolates of the L. donovani species complex

across its global distribution. Our genome-wide SNP data revealed the broad population structure

of the globally distributed samples from the species complex. L. infantum samples from across the

sampling range fall mainly into a single clade, while L. donovani is much more diverse, largely reflect-

ing the geographical distribution of the parasites. As expected, parasites from the New World

appeared closely related to parasites found in Mediterranean Europe. In addition to SNP diversity,

we identified characteristic aneuploidy patterns of in vitro isolates shared across populations, vari-

able heterozygosity between groups, differing levels of within-group linkage suggesting different

recombination histories within geographical groups, and extensive structural diversity. This analysis

reveals a much greater genetic diversity than suggested by previous, geographically-focused whole-

genome studies in Leishmania and sets the scene for a new understanding of evolution in the Leish-

mania donovani species complex.

Results

Whole-genome variation data of 151 isolates of the L. donovani
complex
We generated paired-end Illumina whole-genome sequence data from promastigote cultures of 97

isolates from the L. donovani complex. These sequence data resulted in a median haploid genome

coverage ranging between 10 and 88 (median = 27) when mapped against the reference genome

assembly of L. infantum JPCM5 (MCAN/ES/98/LLM-724; Peacock et al., 2007). These data were

combined with subsets of previously published sequence data of strains of the L. donovani complex

to represent previously sampled genetic as well as geographic diversity including parasites from Tur-

key (N = 11, Rogers et al., 2014), Sri Lanka (N = 2, Zhang et al., 2014), Spain (N = 1,

Peacock et al., 2007), Ethiopia (N = 1, Rogers et al., 2011); N = 6, Zackay et al., 2018) and a sub-

set of the extensive dataset available from the Indian subcontinent (N = 33, Imamura et al., 2016)

resulting in a total of 151 isolates (Supplementary file 1, visualised at https://microreact.org/proj-

ect/_FWlYSTGf; Argimón et al., 2016).

Accurate SNP variants were identified across 87.8% of the reference genome with a genotype

quality of at least 10 (median = 99), indicating a < 0.1 (median = ~10�10) probability of an incorrect

genotype call. The remaining 12.2% could not be assayed as short reads could not be uniquely

mapped to repetitive parts of the genome. This identified a total of 395,624 SNP sites out of the 32

Mb reference assembly. We also used these sequence data to infer extensive gene copy-number

variation (91.5% of genes varied in dosage; 7,625/8,330 genes) and larger genome structure
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variation, including copy numbers of individual chromosomes (aneuploidy) that is common in Leish-

mania. Together, these data represent the most comprehensive, global database of genetic variation

available for any Leishmania species.

Evolution of the L. donovani complex
Phylogenetic reconstruction based on whole-genome SNP variation clearly separated L. infantum

from L. donovani strains. L. donovani separated into five major groups that coincide with geographic

origin (Figure 1A–B, Figure 1—figure supplement 1) and show a strong signal of isolation-by-dis-

tance (IBD) between countries (0.76, p-value<=0.0001, Mantel test, Supplementary file 2). While

the inferred root of the phylogeny is between L. infantum and L. donovani, groups within L. dono-

vani showed similar levels of divergence as between the two species, with the deepest branches

within L. donovani in East Africa. The largest L. donovani group in our collection, Ldon1, included

samples from the Indian subcontinent, and could be further divided into two subgroups that sepa-

rate samples from India, Nepal and Bangladesh from three samples of Sri Lankan origin; both sub-

groups displayed strikingly little diversity. The large number of isolates in Ldon1 is due to the

extensive previous genomic work in this population (Downing et al., 2011; Imamura et al., 2016),

which identified this as the ‘core group’ of strains circulating in the Indian subcontinent. The geneti-

cally and geographically closest group, Ldon2, was restricted to the Nepali highlands and also

includes the more divergent sample, BPK512A1 (Ldon2 is the ISC1 group of Imamura et al., 2016).

The latter isolate shared sequence similarity with a far more diverse group, Ldon4, of parasites from

the Middle East (Iraq and Saudi Arabia) and Ethiopia (Figure 1A). Admixture analysis identified three

additional samples (from Sudan and Israel), to be of mixed origin between groups Ldon3 and Ldon4.

The Ldon3 group is restricted to Sudan and northern Ethiopia and an outlier sampled in Malta likely

represents an imported case. Group Ldon5 displayed little diversity and is mainly confined to South-

ern Ethiopia and Kenya, with the rift valley in Ethiopia presumably restricting genetic exchange with

Ldon3 through different sandfly vectors (Gebre-Michael et al., 2010; Gebre-Michael and Lane,

1996). A single outlier from this group, LRC-L51p, was sampled in India and again presumably repre-

sents an imported case of African origin.

In contrast, most of the samples of L. infantum clustered into a single group, Linf1, with relatively

little diversity but a broad geographical distribution including Central Asia, the Mediterranean

Region and Latin America but also very distinct lineages from the Western Mediterranean

(Figure 1A–B). Admixture analysis using different numbers of total populations (K) divided the Linf1

group into two to three subgroups, separating samples from China, Uzbekistan and a single Israeli

isolate, from two groups that both include samples from the Mediterranean region and Central/

South America. This latter two subgroups correspond to MON-1 (31 samples of the largest sub-

group) and non-MON-1 zymodemes (six samples from Europe, Turkey and Panama; Figure 1A, Fig-

ure 1—figure supplement 1) categorised by Multilocus Enzyme Electrophoresis (MLEE)

(Rioux et al., 1990). Therefore, geography is not the main driver of parasite diversity across L. infan-

tum in general nor within the globally distributed Linf1 group. This is also mirrored by only marginal

isolation-by-distance correlations within Linf1 (0.20, p-value<0.05, Mantel test, Figure 1—figure sup-

plement 2A, Supplementary file 2). However, IBD relationships are present within the ‘MON-1’

subgroup of Linf1 (0.47, p-value<=0.0001, Mantel test) and very pronounced between the non-

American ‘MON-1’ strains (0.81, p-value<=0.0001, Mantel test, Figure 1—figure supplement 2A,

Supplementary file 2). All 5 ‘MON-1’ American samples formed a monophyletic sub-clade that was

most closely related to parasite strains from Portugal, Spain, Italy and a single isolate from Israel sug-

gesting a South-Western European origin of Central and South American L. infantum (Figure 1—fig-

ure supplement 2A). This result was still valid when including another 26 L. infantum isolates

sampled from three states in Brazil (Carnielli et al., 2018). They all clustered in a single ‘American’

clade with little genetic diversity (Figure 1—figure supplement 2B). L. infantum in Central and

Southern America, however, is not generally monophyletic as also one non-MON-1 L. infantum iso-

lated in Panama was present in our dataset (Figure 1—figure supplement 2). For the zoonotic para-

site L. infantum, 12 of our 30 MON-1 strains were isolated from dogs – previously also described as

the prevalent zymodeme in dogs (Pratlong et al., 2004). For most countries this included isolates

from human and non-human hosts, while samples generally clustered by geography (Figure 1—fig-

ure supplement 2A). This supports previous knowledge of dogs as a reservoir for human infection

(Alvar et al., 2004).

Franssen et al. eLife 2020;9:e51243. DOI: https://doi.org/10.7554/eLife.51243 4 of 44

Research article Genetics and Genomics Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.51243


L. donovani

L. infantum

B

group

L. donovani

L. donovani 

L. donovani 

L. donovani 

L. infantum

other L. infantum

L. donovani 

other L. donovani 

1

2

3

4

5

1

A

sample size

1-5

6-10

11-15

16-20

group

L. donovani

L. donovani 

L. donovani 

L. donovani 

L. infantum

other L. infantum

L. donovani 

other L. donovani 

1

2

3

4

5

1

Map data ©2019 Google, INEGI

L. donovani

L. donovani 

L. donovani 

L. donovani 

L. donovani 

other L. donovani 

1

2

3

4

5

L. infantum

other L. infantum

1

H
N

336 H
onduras

BD21 Bangladesh

CH35 Cyprus

CH33 Cyprus

CH36 Cyprus
CH32 Cyprus
CH34 Cyprus

CUK8 TurkeyCUK10 TurkeyCUK5 TurkeyCUK12 Turkey
CUK11 Turkey

CUK4 Turkey
CUK6 Turkey

CUK9 Turkey

CUK3 Turkey

CUK7 Turkey

CUK2 Turkey

BCN83 Spain

BC
N
87 Spain

IM
T260 Portugal

IM
T373cl1 P

ortugal

LinJP
C
M

5 S
pain

N
T10

Israel

H
N

167 H
onduras

C
ha001 B

razil

W
C

 B
ra

zil

A
R

L B
ra

zil

IS
S

2
4
2
6
 Ita

ly

IS
S

2
4
2
9
 Ita

ly

IS
S

1
7
4
 Ita

ly

IT
M

A
P

2
6
 M

o
ro

c
c
o

R
M

1
 F

ra
n
c
e

L
E

M
3
2
7
8
 F

ra
n
c
e

L
E

M
1
9
8
5

F
ra

n
c
e

L
P

N
1
1
4
 F

ra
n
c
e

IS
S

2
5
0
8
 Ita

ly

IS
S

2
4
2
0
 Ita

ly

L
R

C
-L

6
9
9
 Is

ra
e
l

T
H

6
 I
s
ra

e
l

N
T

1
6
 I
s
ra

e
l

L
R

C
-L

1
3
0
3
 P

a
le

s
ti
n
e

T
H

4
 I
s
ra

e
l

T
H

5
 I
s
ra

e
l

L
R

C
-L

1
2
7
5
 I
s
ra

e
l

In
f0

0
7
 I
s
ra

e
l

L
R

C
-L

1
2
9
6
 P

a
le

s
ti
n
e

In
f0

0
1
 T

u
n
is

ia

P
e
ki

n
g
 C

h
in

a

R
A

C
O

O
N

 D
O

G
 C

h
in

a

D
O

G
 S

T
R

A
IN

 C
h
in

a

S
T
R

A
IN

 B
 C

h
in

a

S
K

IN
 C

h
in

a

S
T
R

A
IN

 A
 C

hi
na

D
 2

 C
hi

na

LR
C

-L
13

11
 U

zb
ek

is
ta

n

LR
C
-L

13
12

 Is
ra

el

LR
C
-L

13
13

 U
zb

ek
is
ta

n

In
f0

04
 S

pa
in

In
f0

55
 S

pa
in

LRC-L
47 F

ra
nce

In
f0

45 F
ra

nce

W
R285 P

anam
a

Inf152 Turkey
EP Turkey

MAM BrazilBD25 Bangladesh
BD22 Bangladesh

BD24 Bangladesh
BD15 BangladeshBD14 BangladeshIECDR1 Bangladesh

BD12 Bangladesh
BD17 Bangladesh
BPK282I9 Nepal

BHU1065A1 India

BHU824A1 India

BHU220A1 India

BPK035A1 Nepal

BHU1139A1 India

BPK294A1 Nepal

BHU816A1 India

BHU1137A1 India

BPK471A1 Nepal

Chowd5 India

STL2-78 India

STL2-79 India

Nandi India

BPK649A1 Nepal

BPK067A1 Nepal

AG83 India

BHU1062.4 India

BHU1064A1 India

BH
U
931A1 India

D
D
8 India

Inf206 U
zbekistan

B
P
K
562A

1 N
epal

B
D

09 B
angladesh

B
D

27 B
angladesh

B
H

U
41 India

B
U

C
K

 M
a
lta

B
P

K
0
7
7
A

1
 N

e
p
a
l

B
P

K
1
5
7
A

1
 N

e
p
a
l

D
o
n
2
0
1
 In

d
ia

L
d
o
n
2
8
2
cl2

 N
e
p
a
l

B
P

K
0
2
9
A

1
N

e
p
a
l

B
P

K
1
6
4
A

1
 N

e
p
a
l

O
V

N
3
 S

riL
a
n
k
a

C
L
-S

L
 S

riL
a
n
k
a

L
6
0
b
 S

riL
a
n
k
a

B
P

K
6
1
2
A

1
 N

e
p
a
l

B
P

K
6
4
8
A

1
 N

e
p

a
l

B
P

K
4
1
3
A

1
 N

e
p

a
l

B
P

K
1
5
6
A

1
 N

e
p

a
l B

P
K

6
2
3
A

1
 N

e
p

a
l

B
P

K
4
0
6
A

1
 N

e
p

a
l

B
P

K
5
1
2
A

1
 N

e
p

a
l

3
6
3
S

K
W

T
I 
E

th
io

p
ia

3
8
3
W

T
I 
E

th
io

p
ia

3
5
6
W

T
V

 E
th

io
p
ia

M
a
lt
a
3
3
 M

a
lt
a

L
d
o
n
LV

9
 E

th
io

p
ia

1
S

 S
u
d
a
n

3
8
-U

M
K

 S
u
d
a
n

7
6
2
L 

S
u
d
a
n

4
5
2
B

M
 S

u
d
a
n

5
9
7
-2

 S
u
d
a
n

59
7L

N
 S

ud
an

10
26

-8
 S

ud
an

85
5-

9 
S
ud

an

G
E
B
R
E
1 

E
th

io
pi

a

45
-U

M
K
 S

ud
an

36
4S

P
W

TII 
E
th

io
pi
a

G
IL

AN
I S

ud
an

LR
C
-L

61 S
udan

SUDAN1 S
udan

LRC-L
740 Is

ra
el

GE S
udan

LEM3472 S
udan

Don081 SaudiArabia

Don038 Ethiopia

BUMM3 Ira
q

SUKKAR2 Ira
q

LRC-L57 Kenya

LRC-L445 Kenya

LRC-L51p India

NLB-323 Kenya

AM560WTI Ethiopia

AM563WTI Ethiopia

MRC74 Kenya

LRC-L53 Kenya

92

1
8

8
0

92

3
4

Figure 1. Sample phylogeny and distribution. (A) Phylogeny of all 151 samples of the L. donovani complex. The phylogeny was calculated with
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Figure 1 continued on next page
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In contrast to the low diversity across the wide geographical range of the core L. infantum group,

Linf1, the remaining samples of L. infantum, from Cyprus and Çukurova in Turkey, are genetically

more distinct and showed unusual positioning in the phylogeny close to the split between L. infan-

tum and L. donovani. Samples from the Çukurova region of Turkey (CUK, green) are considered to

be a lineage descended from a single crossing event of a strain related to the L. infantum reference

strain JPCM5 and an unknown L. infantum or L. donovani strain (Rogers et al., 2014). Isolates from

Cyprus (CH, grey) are also divergent from the L. infantum group: these parasites were identified as

L. donovani using MLEE, but the associated pattern of markers (MON-37) has been shown to be par-

aphyletic (Alam et al., 2009), so its species identity might be debateable. Our data suggest that the

two slightly different Cypriot isolates (CH32 and CH34) are admixed between the Çukurova and

remaining Cypriot strains. Two more isolates (MAM and EP; from Brazil and Turkey) are both highly

divergent from any other isolates in the phylogeny, and appeared to be admixed between the Linf1

group and other lineages. As expected from the relatively high divergence of the CUK and Cypriot

clades that have their origin from the centre of the sampling range, there is no overall IBD relation-

ship across all L. infantum samples (�0.12, ns., Mantel test, Supplementary file 2). This suggests

that in contrast to L. donovani, the majority of L. infantum shows little diversity, but diverse strains

can co-localise in the case of non-MON-1 strains (see also Guerbouj et al., 2001) and can have

diversified by hybridisation in case of the CUK strains.

Aneuploidy
We observed extensive variation in chromosome copy number in our isolated strains in vitro, inferred

from read coverage depth, with the pattern of variation being incongruent with the genome-wide

phylogeny (Figure 2—figure supplement 1). Aneuploidy patterns are known to vary over very short

time scales, even within strains and upon changing environments (Sterkers et al., 2011;

Dumetz et al., 2017; Lachaud et al., 2014), although consistent patterns of aneuploidy have been

observed within small groups of closely related cultured field isolates (Imamura et al., 2016). We

took advantage of the greater diversity and global scope of our data to investigate somy patterns of

cultivated promastigotes for individual chromosomes across geographically distinct groups. As

expected, the majority of chromosomes had a median somy of two across isolates, apart from chro-

mosomes 8, 9 and 23 and chromosome 31 with a median somy of three and four, respectively

(Figure 2A,C, Figure 2—figure supplement 2A). However, trisomy was widespread with all chromo-

somes being overall trisomic in at least two isolates (2%) and at least half of all chromosomes were

trisomic in � 28 isolates (19%). In contrast, monosomy was rare – with only four chromosomes having

somy of one in a single isolate each. As previously reported for Leishmania (e.g. Akopyants et al.,

2009; Downing et al., 2011; Imamura et al., 2016 ), chromosome 31 was unusual in being domi-

nantly tetrasomic (81% of samples) and we observed no somy levels below three. Much of this pat-

tern – general disomy, with occasional trisomy and sporadic higher dosage for most chromosomes –

was consistent across the four largest groups, as was the high dosage of chromosome 31 (Figure 2—

figure supplement 2B). Similarly, chromosome 23 showed a tendency to trisomy in all four groups,

and chromosomes 8 and 9 were dominantly trisomic in three of the groups.

As some chromosomes appeared to be more frequently present at high copy numbers in our iso-

lates, we investigated whether their copy numbers were also more variable. Copy number variability

for each chromosome was estimated by the standard deviation (sd) in somy and was positively corre-

lated between the four largest groups (Figure 2B). Correlations were much higher between three

groups from diverse sampling locations, while correlations to the CUK group sampled in the

Figure 1 continued

were calculated by admixture with K = 8, K = 11 and K = 13 (see Materials and methods). Groups labelled with different colours were defined based on

the phylogeny and include monophyletic groups as well as groups that are polyphyletic and/or largely influenced by hybridisation (indicated by ‘other’).

(B) Map of the sampling locations. Groups are indicated by the different colours. Sample sizes by country of origin are visualised by the sizes of the

circles.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phylogenetic reconstruction of all 151 samples of the L. donovani complex.

Figure supplement 2. Sample phylogeny of the Linf1 group.
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Çukurova province were lower, suggesting a distinct pattern of aneuploidy variability in this group –

perhaps due to its hybrid origin (Rogers et al., 2014). Given the positive correlations between inde-

pendent groups, we investigated chromosome-specific variation in somy using the four independent

groups (Figure 2C). A few chromosomes including 19, 27, 28 and 34 showed almost no variation,

while several chromosomes showed very high variation in chromosome copy number with the top

five chromosomes being 23, 5, 8, 6 and 26 (Figure 2C). This indicated that some chromosomes have

higher propensities for chromosome aneuploidy turnover than others.
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Figure 2. Chromosome-specific somy variability. (A) Somy variability is displayed for the 7 largest groups ( � 5 isolates) for each chromosome as

fractions of isolates with the respective somies. The four largest groups ( � 9 samples per group) are indicated in bold. (B) The heatmap shows the

Spearman correlations of chromosome-specific somy statistics between the four largest groups, measured as the mean group somies (upper triangle)

and the standard deviation (sd) of chromosome somies (lower triangle), respectively. False discovery rates (FDR) of each correlation are indicated by

asterisks (*: < 0.05, **: < 0.01, ***: < 0.001). (C) Boxplots show the distribution of variability in chromosome-specific somy across the four largest groups

used as independent replicates across the species range. Medians estimate the chromosome-specific variation in somy.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Aneuploidy patterns across all 151 samples.

Figure supplement 2. Aneuploidy distributions for the different chromosomes.
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Heterozygosity
Samples varied greatly in genome-wide heterozygosity: 70% of the isolates in our collection showed

extremely low heterozygosity (<0.004; see Materials and methods) corresponding to between 23

and 2057 (median = 80) heterozygous sites per sample. The remaining high-heterozygosity samples

largely showed heterozygosities up to ~0.02 (equivalent to 15,281 heterozygous sites per sample)

with a few outliers exceeding this threshold and reaching a heterozygosity of 0.065 in one isolate

(MAM, 50,543 heterozygous sites) (Figure 3A). For almost all isolates the majority of genome-wide

10 kb windows had almost no heterozygous sites: only 11 isolates had a median count of heterozy-

gous sites per window greater than zero (Figure 3—figure supplement 1). This predominant homo-

zygosity for the majority of isolates of the L. donovani complex was in striking contrast to

expectations for sexual populations under Hardy-Weinberg equilibrium, or for clonally reproducing

populations: clonal reproduction is expected to increase heterozygosity, as single mutations cannot

be assorted to form novel homozygous genotypes (Balloux et al., 2003; De Meeûs et al., 2006;

Weir et al., 2016). Most main groups were dominated by samples of low heterozygosity, with the

exception of the Ldon3 group and the CUK group of hybrid L. infantum isolates (Rogers et al.,

2014). Other high-heterozygosity isolates mainly appeared in positions intermediate between large

groups in the phylogeny, and showed mixed ancestry in the admixture analysis (e.g. isolates MAM,

EP, CH32, CH34, GE, LEM3472, LRC-L740; Figure 1A), leading us to hypothesise that they represent

recent hybrids between the distinct, well-differentiated populations.
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Figure 3. Whole genome sample heterozygosities. (A) Whole genome heterozygosities versus fraction of reference alleles. The fraction of reference

alleles is calculated across all 395,602 SNP loci in the data set. Isolate names are written unless they are present in dense clusters indicated by dashed-

line circles. Groups are indicated by colour as defined in figure 1. The dashed horizontal line at a genome-wide heterozygosity of 0.004 was chosen to

separate samples with putative recent between-strain hybridisation history. (B) Relationship between chromosome-specific somy variability and sample

heterozygosity. The scatterplot describes the relationship between the standard deviation in chromosome-specific somy by group (groups with � 5

samples) against the chromosome-specific sample heterozygosity. Linear regressions were performed for each group. Asterisks indicate statistical

significance of the estimated regression slope with *: < 0.05, **: < 0.01, ***: < 0.001 or ’-’ for not significant. Marginal histograms on the top and on the

right correspond to the x-values and the y-values of the scatterplot, respectively. Groups are indicated by the different colours.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of heterozygous sites across the genome.
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The low heterozygosity together with strong genetic signatures of inbreeding in Leishmania had

previously been identified using MLST and microsatellite data, and has generally been attributed to

extensive selfing between cells from the same clone (Ramı́rez and Llewellyn, 2014;

Rougeron et al., 2009). However, an alternative explanation could be that frequent aneuploidy turn-

over also reduces within-cell heterozygosity if an alternate haplotype is lost during somy reduction

(Sterkers et al., 2014). We therefore tested whether the chromosome-specific variation in somy for

each group was negatively correlated with chromosome-specific sample heterozygosity, as a high

turnover rate could reduce within-strain heterozygosity. Linear regressions for the different groups

showed negative slopes for three of seven groups but only the slope for the Ldon3 group was signif-

icant after multiple testing correction (Figure 3B). For the four groups, Ldon1, Ldon2, Ldon5 and

Linf1, where the regression slope was almost zero, the chromosomes were almost completely homo-

zygous which might make potential effects undetectable (Figure 3A,B). The data for the remaining

groups is in accordance with a reduction in heterozygosity with aneuploidy turnover. However, to

establish presence and effect sizes of a reduction in heterozygosity due to aneuploidy turnover

direct experiments and more accurate estimates of aneuploidy turnover are needed, particularly

using in vivo parasites.

Genomic signatures of hybridisation
To clarify the relationship between the high heterozygosity of some isolates, their phylogenetic posi-

tion and the signatures of admixture, we examined the genomes of all 46 isolates with genome-wide

heterozygosity greater than 0.004 in more detail for signs of past hybridisation (Figure 3A, row A1

in Table 1). This threshold was chosen to include the majority of samples that had putative hybrid

ancestry in the admixture analysis, including the Çukurova samples of known hybrid origin

(Rogers et al., 2014). The few isolates with lower heterozygosity but other evidence of admixture

were also investigated (BPK512A1, L60b, CL-SL and OVN3 between groups, and LRC-L1311, LRC-

L1312 and LRC-L1313 between subgroups; rows A2 and B6 in Table 1), but identifying details

beyond admixture results was difficult with only a few SNPs available (e.g. Figure 4—figure supple-

ments 1A and 2D). For the 46 high-heterozygosity isolates (Table 1), we inspected the distribution

of heterozygous sites along each genome, looked for blocks of co-inherited variants and investi-

gated patterns of allele-specific read coverage (i.e. sample allele frequency) across each chromo-

some. We also inferred maxicircle kinetoplast (mitochondrial) genome sequences: as kDNA is

considered to be uniparentally inherited (Akopyants et al., 2009; Inbar et al., 2013), the phylogeny

for these sequences should identify one parent of any hybrid isolates.

28 of the 46 high heterozygosity isolates appeared to represent genuine hybrid lineages (rows

B1, B2 and B4 in Table 1), and for 17 of these, likely parents could be assigned (row B2 in Table 1).

The largest group with identified parents is the Turkish isolates from Çukurova province

(Rogers et al., 2014). Additionally, two Cypriot isolates (CH32 and CH34) showed patches of homo-

zygosity closely related to the other Cypriot isolates and the Turkish CUK hybrids (Figure 4, Fig-

ure 4—figure supplement 1A). Therefore, CH32 and CH34 likely represent hybrids closely related

to the CUK hybrids, but clearly derived from an independent hybridisation event to the CUK popula-

tion itself (Figure 1A). Another Turkish isolate (EP) appeared to have a similar evolutionary history

with putative parental strains from the Linf1 and the CUK hybrids (Figure 4). In contrast to previous

hybrids, for EP, there were entire homozygous chromosomes that resembled either of the two puta-

tive parental groups (chromosomes 4, 12, 22 and 32 for one and 11, 23 and 24 for the other parent;

Figure 4). Phylogenetic analysis of the kDNA maxicircles further showed identical sequences to the

Cypriot hybrid samples (CH23 and CH34, Figure 4—figure supplements 3, 4, Supplementary file

3). Additionally, on two chromosomes, 5 and 31, allele frequency distributions in the EP isolate were

not compatible with a single, clonal population of cells suggesting the presence of a second but

very closely related low frequency clone in this sample (Figure 4—figure supplements 2, 5). We

also saw discrete patches of heterozygous and homozygous variants in two isolates from East Africa

(GE and LEM3472) and one from Israel (LRC-L740) that did not fit into any of the main L. donovani

groups. These isolates appeared admixed between the North Ethiopia/Sudan group (Ldon3) and the

L. donovani group present in the Middle East (Ldon4) (Figures 1A and 4, Figure 4—figure supple-

ment 1A). For sample GE, kDNA further confirmed that one putative parent came from the Ldon3

group (Figure 4—figure supplement 3). All the isolates from the Ldon3 group, were also highly
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heterozygous and so potentially hybrids, but we cannot exclude other possible origins for this het-

erozygosity (Figures 3A and 4 , Figure 4—figure supplement 1, Table 1).

While the CUK samples are known to be of hybrid origin between a JPCM5-like L. infantum iso-

late and an unidentified parasite from the L. donovani complex (Rogers et al., 2014), our admixture

results did not suggest hybridisation between genetic groups present in our dataset. This still held

when varying K (the specified number of subpopulations) from 2 to 25 (Figure 4—figure supple-

ment 6). We therefore took a haplotype-based approach to increase the power to identify putative

parents of these hybrids similar to that in Rogers et al. (2014), but now compared them to our

larger set of isolates. We identified the largest homozygous regions in the CUK genomes: that is

those that were either almost devoid of SNP differences to the JPCM5 reference genome or those

that had a high density of fixed differences but lacked heterozygous sites, and generated phyloge-

nies for these regions (Figure 4—figure supplement 7; see Materials and methods). Trees for the

four largest regions (155 kb – 215 kb) placed the JPCM5-like parent close to L. infantum samples

from China, rather than to the classical MON-1 and non-MON-1 Mediterranean subgroups

Table 1. Summary of the hybrid analysis.

Category ID Description Interpretation
#
Samples

Fraction
of
samples Sample identities

Initial
definition of
the 53 (35%)
putative
hybrids

A1 ‘High’ genome-wide heterozygosity
(>=0.004)

initial indicator for putative hybrids 46 30% BPK157A1, BUMM3, CH32, CH34,
CUK10, CUK11, CUK12, CUK2,
CUK3, CUK4, CUK5, CUK6, CUK7,
CUK8, CUK9, EP, GE, GEBRE1,
GILANI, Inf055, Inf152, ISS174,
ISS2426, ISS2429, LdonLV9,
LEM3472, LRC-L53, LRC-L61, LRC-
L740, Malta33, MAM, SUDAN1,
SUKKAR2, 1026–8, 1S, 356WTV,
363SKWTI, 364SPWTII, 38-UMK,
383WTI, 45-UMK, 452BM, 597–2,
597LN, 762L, 855–9

A2 ‘Admixed’ between groups
(admixture analysis)

initial indicator for putative hybrids 15 10% BPK512A1, CH32, CH34, CL-SL, EP,
GE, Inf152, L60b, LEM3472, LRC-
L1311, LRC-L1312, LRC-L1313, LRC-
L740, MAM, OVN3

Detailed
investigation
of the 53
(35%)
putative
hybrids

B1 Heterozygous sites distributed
relatively evenly across the genome
and allele frequency profiles match
coverage based somy estimates

putative patterns of sexual crossing
(F1/F2+), however, cannot be
verified without identified putative
parents; alternative explanation
could be new mutations that are
dominating the sample population
through a recent bottleneck (e.g.
cloning)

18 12% Inf055, GEBRE1, LdonLV9, LRC.L61,
SUDAN1, 1026–8, 1S, 356WTV,
363SKWTI, 364SPWTII, 38-UMK,
383WTI, 45-UMK, 452BM, 597–2,
597LN, 762L, 855–9

B2 Evidence for parents between
different groups (or between two
distinct strains as previously shown
for the CUK samples) alternating in
the genome in a block like pattern

putative patterns of sexual crossing
(F2+), that is ‘hybrids’

16 (+1) 10%
(11%)

CH32, CH34, CUK10, CUK11,
CUK12, CUK2, CUK3, CUK4, CUK5,
CUK6, CUK7, CUK8, CUK9, EP, GE,
LEM3472, (LRC-L740)

B3 Extreme allele frequency variants
only

mixture of two different high versus
low frequency clones or low
frequency new mutations
distributed across haplotypes in
the sample

7 5% BPK157A1, Inf152, ISS174, ISS2426,
ISS2429, LRC-L53, MAM

B4 Intermediate peak allele frequency
distributions including extreme
frequency peaks

mixture of scenarios B1 and B3,
that is as B3 but high frequency
clone has heterozygous sites itself

4 3% BUMM3, LRC-L740, Malta33,
SUKKAR2

B5 no clear peak pattern of allele
frequencies (several peaks at
atypical frequencies)

mixture of several clones 1 0.01% GILANI

B6 to few heterozygous sites present to
draw further conclusions beyond
admixture results

signatures are shadowed by too
little segregating variation

7 5% BPK512A1, CL-SL, L60b, LRC-L1311,
LRC-L1312, LRC-L1313, OVN3
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Figure 4. Window-based analysis of relatedness. Each circos plot shows four different genomic features of the isolate named in each top left corner. In

the four different rings, pies correspond to the different chromosomes labelled by chromosome number. The three outer rings show a window-based

analysis for a window size of 10 kb. Starting from the outer ring, they show: 1. Heterozygosity with the number of heterozygous sites ranging from 0 to

98, 146, 90 and 85 sites per window for CH34, EP, GE and 364SPWTII, respectively, 2. A heatmap coloured by groups of the 60 genetically closest

isolates based on Nei’s D and starting with the closest sample at the outer margin and the 60th furthest isolate at the inner margin, 3. Nei’s D to the

closest (green) and the 60th closest isolate (orange) scaled from 0 to 1. The innermost circle shows the colour-coded somy.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Window based analysis of relatedness for a subset of samples.

Figure 4 continued on next page
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(Figure 4—figure supplement 8A). Trees for the putative other parent always grouped CUK with

CH samples similarly to the phylogeny of the maxicircle DNA (Figure 4—figure supplement 3), sug-

gesting these as closest putative parents to the CUK group in our sample collection (Figure 4—fig-

ure supplement 8B). The phylogenetic origin of the CH samples, however, still remained uncertain:

in these four phylogenies the CH samples clustered twice next to the Ldon4 group, once next to

Linf1 and once between both species. A haplotype-based approach as used for the CUK samples,

and polarizing on several different isolates also did not give clear results (data not shown).

Isolates with genetically distinct (sub-)clones
Unexpectedly, for 12 of the remaining isolates (rows B3 – B5 in Table 1), many of the heterozygous

sites were present at extreme (high/low) allele frequencies (11 isolates) or at multiple intermediate

frequencies (isolate GILANI), incompatible with the allele frequencies expected based on chromo-

somal somy (Figure 4—figure supplements 2, 5). We suspect that these isolates represent a mix-

ture of multiple cell clones. However, as low frequency variants are more at risk of being false

positive SNP calls, we additionally selected a subset of the highest confidence SNPs to verify the

observed frequency patterns (see Materials and methods). The MAM isolate had the highest hetero-

zygosity in our collection: it only had 178 homozygous differences to the JPCM5 reference, but

50,534 heterozygous sites, with a frequency of the reference allele of ~0.92 across all chromosomes

(Figure 4—figure supplement 2). Phylogenies for inferred haplotypes of these low-frequency var-

iants were closest but not part of the Ldon5 group (Figure 4—figure supplement 9), although this

was somewhat variable between chromosomes (Figure 4—figure supplement 9B–D). We concluded

that the MAM sample is most likely a mixture between a JPCM5-like L. infantum strain at high

(~0.92) and an L. donovani related to Ldon5 at low (0.08) sample frequency. Due to the low fre-

quency of the 2nd strain it might be that alleles have been missed for SNP calling and therefore the

calculated sample heterozygosity is lower than expected for interspecies F1 crosses (see Figure 4—

figure supplement 10). Similarly, the few heterozygous isolates within several L. donovani groups,

BPK157A1 in Ldon1, Malta33 and GILANI in Ldon3, SUKKAR2 and BUMM3 in Ldon4 and LRC-L53 in

Ldon5 (Figure 3A) all appeared to be mixtures of two clones from within the respective group (Fig-

ure 4—figure supplement 9) apart from GILANI, which might be a more complex mixture (Fig-

ure 4—figure supplement 2). For two of those samples the high number of within sample SNPs is

due to segregating clones at high and low frequency (BPK157A1, LRC-L53 see row B3 in Table 1).

For the other samples (BUMM3, Malta33, SUKKAR2; row B4 in Table 1) the majority of SNPs come

from heterozygous sites of a putative hybrid with a smaller fraction of SNPs owing to an additional

related low frequency clone (Figure 4—figure supplement 2). However, as one isolate from this

subset (BPK157A1) was re-grown from a single cell prior to sequencing (Supplementary file 1), we

cannot be sure that these variants are due to a mixture of clones. We ruled out false positive SNP

calls by identifying 216 of the highest quality SNPs that show the extreme frequency pattern (Fig-

ure 4—figure supplement 11; Materials and methods), however, alternate explanations including

incomplete cloning or changes during in vitro culture post-cloning also seem unlikely. Highly hetero-

zygous isolates from L. infantum (ISS174, ISS2426, ISS2429 and Inf152 in Linf1) also had skewed

allele frequency distributions Figure 4—figure supplements 2, 11), and therefore likely represent

either mixed clone isolates or samples that have evolved significant diversity during in vitro growth.

Figure 4 continued

Figure supplement 2. Allele frequency distributions by isolate.

Figure supplement 3. Phylogenetic tree based on the maxicircle DNA.

Figure supplement 4. Coverage of maxicircle DNA.

Figure supplement 5. Somy evaluation based on allele frequency profiles.

Figure supplement 6. Sample phylogeny and admixture analysis across a range of K values.

Figure supplement 7. Genomic regions used for haplotype-based parent identification.

Figure supplement 8. Putative parents of CUK samples.

Figure supplement 9. Sample phylogeny based on genomic SNP variation including phased samples with skewed allele frequency spectra.

Figure supplement 10. Heterozygosity of artificial F1 hybrids.

Figure supplement 11. Verification of skewed allele frequency spectra in a subset of isolated strains.

Figure supplement 12. Correlation between somies and heterozygosities across chromosomes.
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Samples, ISS174, ISS2426 and ISS2429, showed a strong positive correlation of chromosomal hetero-

zygosity and somy not found in any other samples (Figure 4—figure supplement 12). We speculate

that these isolates may have accumulated substantial numbers of new mutations most likely while

maintaining relatively stable chromosome copy number during in vitro culture. Consequently, we

expect relatively more mutations on chromosomes with a higher chromosome dosage, resulting in

higher heterozygosity of high somy chromosomes.

Population genomic characterisation of the groups
Sexual recombination is not obligate in the Leishmania lifecycle and appears to be rare in many natu-

ral populations (Imamura et al., 2016; Ramı́rez and Llewellyn, 2014; Rougeron et al., 2009). We

thus examined patterns of linkage disequilibrium (LD) between Leishmania populations as a clue to

the frequency of sexual recombination, bearing in mind that LD can be affected by underlying popu-

lation structure. LD estimates further depend on the frequency of recombination, the population

size, demographic history (Slatkin, 1994) and the size of sample taken from the population (see also

Figure 5A versus Figure 5—figure supplement 1). We subsampled larger groups to identical group

sizes and found strong differences between groups in LD decay with genomic distance (Figure 5A).

Linkage was strongest in the Ldon2 group with mean LD estimates around 0.9 regardless of genomic

distance between SNPs, even when comparing sites on different chromosomes. The L. infantum

groups (Linf1 and the CUK samples) started with high mean LD values for 1 kb distances above 0.9

and 0.8, respectively, and dropped to ~0.5 for 100 kb distances and to ~0.4 and ~0.3 between chro-

mosomes. Ldon3 and Ldon5 groups had the lowest LD estimates: at up to 1 kb distances LD had

mean values of ~0.8 and 0.6 for Ldon3 and Ldon5, respectively, and dropped to ~0.2 for distances �

50 kb in both groups and remained at those levels between chromosomes. All of these trends were

relatively consistent among three independent subsamples from each of the larger groups, but the

pattern was more complex for Ldon1. Here, the mean LD had a flat distribution with genomic dis-

tance like the Ldon2 group but at a much lower LD level, and showed significant variation between

3 subsamples (Figure 5B): two of the three subsamples showed low but very variable LD, and the

third showed consistently high LD with distance. Low LD replicates were based on samples with a

greatly reduced number of within-replicate SNPs (683 and 685 in R1 and R3 versus 23,303 SNPs in

replicate R2). In the low LD replicates the majority of SNPs were singletons or present in only two

copies, while in replicate R2 the majority of minor alleles were present at four copies (Figure 5—fig-

ure supplement 2A). Mean LD estimates across the entire Ldon1 group were also consistent at high

levels above 0.8 independent of genomic distance (Figure 5—figure supplement 1). We conclude

that the substructure described for samples from the Indian subcontinent (Imamura et al., 2016) is

responsible for varying LD estimates of the subsamples, with low LD replicates due to sampling only

closely-related subgroups that only differ in a small number of isolate-specific variants that are most

parsimoniously described by recent mutations (Figure 5B). While the level of LD in a population can-

not be used to directly quantify the frequency of recombination due to the contribution of demo-

graphic factors, we interpret a gradual decrease of LD with distance as a signal of frequent

recombination occurring in those populations.

The groups also differed in their allele frequency distributions (i.e. the site frequency spectra,

SFS). In a diploid, panmictic and sexually recombining population of constant population size neutral

sites should segregate following a reciprocal function (Ferretti et al., 2018; Wright, 1938). While

we would not predict Leishmania populations to exactly follow these expectations, most of the

groups (Ldon1, Ldon2, Ldon5 and Linf1) were dominated by low frequency variants (Figure 5—fig-

ure supplement 2). In contrast, intermediate frequency variants were frequent in Ldon3 and even

dominated variation in the L. infantum CUK samples. The CUK group had been suggested to have

largely expanded clonally from a single hybridisation event between diverse strains with little subse-

quent hybridisation (Rogers et al., 2014). This scenario might explain why polymorphic sites, gener-

ated by the hybridisation of diverse strains and common to the majority of samples can be at

intermediate population frequency. This group history also agrees with stronger LD over short dis-

tances due to shared blocks that may be broken up by rare subsequent hybridisation and recombi-

nation events. For the Ldon3 group increased intermediate frequency alleles combined with a strong

decline of LD with distance might suggest that old variants are segregating in the group at high fre-

quencies, due to relatively frequent hybridisation between clones within this group.
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Figure 5. LD decay with genomic distance. (A) LD decay was measured for the six largest groups removing isolates that were identified as putative

strain mixtures (indicated by *; see Materials and methods). Groups with more than seven isolates per group were sub-sampled to three pseudo-

replicates of seven isolates (round symbols) to make LD estimates comparable between groups. Mean and standard deviation across the three pseudo-

replicates are shown where applicable. Groups with only seven isolates were not sub-sampled and are indicated by squared symbols. (B) LD decay with

distance is shown for the three pseudo-replicates for the Ldon1 group. (A and B) Data for individual replicates was calculated as means of 1 kb windows

for SNP pairs of the stated genomic distance. For LD estimates between chromosomes, 100 SNPs were randomly sampled per chromosome and means

across all pair-wise combinations between chromosomes are shown. This procedure was done twice independently but as differences between both

such replicates were negligible, only the results of one replicate are shown.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. LD decay with genomic distance.

Figure supplement 2. Folded site frequency spectra of the six largest groups.
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To identify genomic differences between the major groups, we determined the fixation index

(FST) for all SNP variants among pairs of groups, excluding samples identified as between group mix-

tures (Table 1 B3 and B4) or hybrids between groups (Table 1 B2, except CUK samples). Most SNP

sites segregating within each pair of groups were found to be population-specific, that is FST = 1, in

10 out of 15 pairs (Figure 6A). This confirmed that most groups are well differentiated from each

other with limited gene flow between them. This high level of differentiation allowed us to identify

between 6,769 and 26,145 potentially differentially fixed ‘marker’ SNPs for each group (Figure 6B,

Supplementary file 4). These markers can be useful in diagnosing parasite infections from particular
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Figure 6. Differentiated and segregating SNPs between and within groups. For this analysis isolates that were shown to be mixtures of clones or

hybrids between groups were removed (indicated by ‘*’, see also Materials and methods). Groups sizes after removal of those isolates are specified in

panels A and C. (A) FST values between pairwise group comparisons. The fraction of differentially fixed SNPs (FST = 1) for each pairwise group

comparison is indicated at the top right corner of each plot. Percentages larger than 50% are coloured in red, otherwise blue. (B) The number of marker

SNPs for each group, that is SNPs that are differentially fixed in one group versus all others. (C) Number of SNPs that are differentially fixed between

sets of groups. Groups fixed for the same allele are indicated in the bottom panel through connecting points corresponding to the specific groups.

Grey and black lines connect sets of groups monomorphic for the alternate and reference allele, respectively. (D) Number and density of SNPs

segregating in the respective groups. As sample sizes of the different groups vary, figures are also shown for three random sub-samples of the larger

groups. Results of sub-sampling are displayed as mean and sd.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Polymorphism sharing between groups.
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groups, but might not be fixed in populations identified based on a few isolates only. Despite this

differentiation, many variants remained that were fixed in combinations of groups. Most of these

SNPs supported the species split, between L. infantum and L. donovani, with 11,228 differentially

fixed SNPs (Figure 6C). Within-group genetic diversity varied substantially between groups ranging

from less than 1 SNP/10 kb within the three CH samples to ~16 SNPs/10 kb in Ldon4 (Figure 6D).

Subsampled groups of seven isolates typically had ~3 SNPs/10 kb, while the two more polymorphic

groups of L. donovani had SNP densities of ~12 and~14 SNPs/10 kb. Most within-group segregating

variation was group-specific: no SNPs segregated within all eight groups. The most widespread

polymorphisms are 4 SNPs shared between 6 groups and 25 SNPs segregating in at least five of the

eight groups and might be putative candidates for SNPs under balancing selection (Figure 6—fig-

ure supplement 1, Supplementary file 5).

Copy number variation
To assess the importance of genome structure variation in Leishmania evolution, we identified all

large sub-chromosome scale copy number variants (CNVs) within our isolates (duplications and dele-

tions � 25 kb; see Materials and methods). In total, 940 large CNVs were found, an average of ~6

per sample. 75% of these large variants had a length � 40 kb and only ~3% were > 100 kb with the

largest variant of 675 kb (Supplementary file 6, Figure 7—figure supplement 1). Most of these

very large variants ( > 100 kb), were located on chromosome 35 (Figure 7—figure supplement 2).

Interestingly, those were all either deletions or duplications close to the 3’ and 5’ end of the chromo-

some, respectively. All those duplications contained the previously described CD1/LD1 locus (Fig-

ure 7—figure supplement 2; Sunkin et al., 2001; Kündig et al., 1999; Lemley et al., 1999). In

total, we found at least 9 different duplicated sequences spanning the CD1/LD1 locus, present in 13

of our 151 isolates (Supplementary file 7, 8). The frequency of large CNVs varied among chromo-

somes but was not associated with chromosome length for duplications (Pearson correlation -0.06,

p-value 0.74) and showed a weak negative correlation for deletions (Pearson correlation 0.32,

p-value 0.05) (Figure 7—figure supplement 3). We identified a total of 183 and 62 ’unique’ duplica-

tions and deletions, respectively, when clustering each variant type across all samples based on chro-

mosomal location (see Materials and methods, Supplementary file 7). Approximately half the CNVs

were located at the chromosome ends, that is 22% and 26% starting within 15 kb of chromosome 5’

and 3’ ends, respectively. The majority of large CNVs, were present in only a single sample, but

some were much more widespread – the most frequent being present in 42 different samples and

one variant being present in eight different groups (Figure 7—figure supplement 4A). We were

particularly interested in CNVs that were present in multiple groups or both species, as these must

either have been segregating over a long period of time, or have arisen multiple times indepen-

dently in different populations. 28% (69 of 245) of all variants were present in both species (Fig-

ure 7—figure supplement 4B; Supplementary file 7) and we investigated those in more detail. We

excluded terminal CNVs that showed a gradual coverage increase towards the ends (e.g. Figure 7—

figure supplement 5) as these have been suspected to be due to telomeric amplifications

(Bussotti et al., 2018). Several other shared CNVs may represent collapsed repeat regions in the

reference genome assembly at which the repeat number varies between samples or where coverage

is close to our CNV coverage calling thresholds (e.g. Figure 7—figure supplement 6), so we

inspected these manually.

We describe in detail two examples of clear CNVs, one deletion and one duplication. The 25 kb

long deletion on chromosome 27 was present in 15% of all samples and across four of the different

identified groups including both species (Figure 7A, deletion 150 in Supplementary file 7). It always

occurred on a disomic background resulting in the loss of the allele. The 17 genes present in the

deleted region were enriched for the GO term ‘cilium-dependent motility’ due to a single gene

annotated as a ‘radial spoke protein 3’ (LINF_270011200 v41, LinJ.27.2550 v38) (Figure 7C). How-

ever, other genes including a putative amastin (LINF_270011400 v41, LinJ.27.2550 v38) – part of a

large gene family that has an essential role during infection of the mammalian host (de Paiva et al.,

2015) – were also present in this region. The duplication found on chromosome 35 was only present

in a single sample in each, the Ldon1 and Linf1, group and overlapped with the CD1/LD1 locus

(Figure 7B; duplication 215 in Supplementary file 7). In Ldon1, it showed a 2-copy increase on a

disomic background, suggesting it was either homozygous for a duplication haplotype or heterozy-

gous with one normal and one 2-copy duplication haplotype. In contrast, the sample from Linf1 has
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a single copy duplication on a trisomic background. 66 genes are present in the insertion enriched

for several GO categories (Figure 7C). As in Leishmania deletions and duplications have been shown

to be mediated by repeat sequences (Ubeda et al., 2014; for example Carnielli et al., 2018), we

also looked for previously described and newly identified repeated sequences around the
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Figure 7. Two large CNVs that are shared between both species. (A) Chromosome 27 has a 25 kb long deletion that is present in 15% of all samples

and four different groups. All chromosomes 27 that have this deletion in our dataset are diploid and the deletion results in a loss of this allele in the

respective sample. (B) The duplication on chromosome 35 is 235 kb long and present in one isolate of group Ldon1 and Linf1, respectively. The

insertion is once present on a disomic background with a 2-fold increase and once on a trisomic background with a 1-fold increase. The green

rectangle marks the CD1/LD1 locus sequences for L. infantum described in Sunkin et al. (2001) (Supplementary file 8). For A) and B) a few closely

related samples not harbouring the respective CNV are also displayed and highlighted in dark grey. Group identities are indicated by colours of the

isolate name. (C) Genes present in the respective CNV along with GO enrichment results using topGO (Alexa et al., 2006). Details on both CNVs can

be found in Supplementary file 7: unique CNVs with ids 150 and 215, respectively. The CNV characterisation of the corresponding isolates can be

found in Supplementary file 6.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Length distribution of large CNVs by chromosome.

Figure supplement 2. Most chromosome scale CNVs are located on chromosome 35.

Figure supplement 3. Fraction of large CNVs across chromosomes.

Figure supplement 4. Large CNVs shared across samples and groups.

Figure supplement 5. Increased coverage of samples towards chromosome ends.

Figure supplement 6. Indication of a putative assembly error in the reference genome.

Figure supplement 7. CNV association with repeat sequences in the genome.

Figure supplement 8. Identification of novel repeated sequences on chromosome 27.
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breakpoint regions of the CNVs on chromosomes 27 and 35 (JPCM5, TriTrypDB v38, RRID:SCR_

007043; Figure 7—figure supplement 7). For the common deletion on chromosome 27, a few

repeats were present close to the 3’ and 5’ borders of the deleted sequence, respectively. However,

no matching repeats were present at both breakpoints that could explain the deletion by the previ-

ously described mechanism (Ubeda et al., 2014). The large CNVs on chromosome 35 mainly

occurred at chromosome ends. We inspected three intra-chromosomal breakpoint regions in a total

of five strains, but only in one strain the insertion breakpoint coincided with a repeated sequence

(sample LRC_L47, insertion 215, Figure 7—figure supplement 7).

To investigate smaller CNVs, we determined the copy number (CN) for each gene in every sample

by normalising the median gene coverage by the haploid coverage of the respective chromosome

(see Materials and methods). CN variation affected 91.5% of genes (7,625 / 8,330; Figure 8A,

Supplementary file 9), but most CNVs are rare (Figure 8A). Only 3.6% of all genes (304) showed a

median copy number change ( � -1 or � 1) across samples with 103 genes decreased and 201

increased, respectively (Figure 8B). Enrichment tests for the 103 genes with frequently reduced

copy number showed GO term enrichments for the biological processes “cation transport”, “trans-

membrane transport”, “fatty acid biosynthesis” and “localization” (median CN change across
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Figure 8. Gene copy number variation across groups. (A) CN abundances by gene across all 151 isolates. Genes are grouped in four categories

(identified by different colours) depending on how many isolates are affected by CN variation in the respective gene. (B) Median copy number changes

for each gene are shown (individual dots) and summarised for the four different categories also used in sub-figure A including the direction of effect
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joining tree using gene CN profiles for each sample.
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samples � 1, Supplementary file 10). The 201 genes that were regularly increased showed enrich-

ment for several terms including but not exclusive to “modulation by symbiont of host protein

kinase-mediated signal transduction”, “cell adhesion” and “drug catabolic process” (median CN

change across samples � 1, for full list see Supplementary file 10). Only a subset of 52 genes

(0.6%) showed frequently high gene copy number increases (median � 4 across all samples).

Enriched GO terms largely overlapped with enrichments of genes including small CN increases with

the additional enrichment of “response to active oxygen species” (Supplementary file 10). Those

categories might indicate functions on which there is frequent or strong selection pressure. Median

gene copy number was positively correlated among groups (Figure 8C, Pearson correlation for pair-

wise comparisons between 0.8 and 0.91). Despite this extensive variation and shared copy number

variation across groups, gene copy number still retained some phylogenetic signal (Figure 8D).

Genetic variation for known drug resistance loci
We investigated how genetic variation previously associated with drug resistance is distributed

across our global collection of isolates, including loci involved in resistance to or treatment failure of

antimonial drugs and Miltefosine (Table 2).

The best-known genetic variant associated with drug resistance in Leishmania is the so-called

H-locus: amplification of this locus is involved in resistance to several unrelated drugs including anti-

monials (Callahan and Beverley, 1991; Dias et al., 2007; Grondin et al., 1993; Leprohon et al.,

2009; Marchini et al., 2003). In our dataset, the four genes at this locus had an increased gene

copy number in 30% of the samples (CN +1 to +44) and a reduced copy number in 9% (CN �1;

Table 2). 36% of all isolates had a copy number increase of varying degree with identical insertion

boundaries that included the genes YIP1, MRPA and argininosuccinate synthase (Figure 9A, Fig-

ure 9—figure supplement 1A, Table 2). This duplication was only present in groups Ldon1 and

Ldon3 with median increases of approximately +4 and +2, respectively. This matches the rationale

that parasites on the Indian subcontinent (largely Ldon1) have experienced the highest drug pres-

sure of antimonials in the past and are suggested to be preadapted to this drug (Dumetz et al.,

2018) and therefore have the highest prevalence and extent of CN increase, followed by isolates

from Sudan and Ethiopia (largely Ldon3). Under this scenario, the Pteridine reductase 1 gene at the

H-locus may not be relevant for the drug resistance as it does not show an increased gene CN along

with the other genes at that locus (Figure 9A). One other isolate, LRC-L51p (Ldon5, India, 1954),

had a much larger duplication in this region including the entire H-locus and spanning >45 kb with

an enormous increase of ~+44 suggesting an independent insertion or amplification mechanism (Fig-

ure 9—figure supplement 1A). Four additional isolates showed a copy number increase for only

two of the genes at the locus, with different boundaries but always including the MRPA gene (Fig-

ure 9—figure supplement 1B).

Differential expression of the Mitogen-activated protein kinase 1 (MAPK1) has previously been

associated with antimony resistance. However, while (Singh et al., 2010) suggested that overexpres-

sion is associated with resistance, (Ashutosh et al., 2012) suggest the opposite effect potentially

implicating an impact of the genetic background. As expression in Leishmania is typically tightly

linked with gene copy number (Prieto Barja et al., 2017; Iantorno et al., 2017), we summarised

MAPK1 CNVs in our dataset (Table 2). 45% of all isolates had an amplified copy number at this

locus, including all isolates of Ldon1 and Ldon3 with the highest copy number increase in Ldon1 iso-

lates of between 12 and 41 copies (Figure 9—figure supplement 2A, Table 2, Supplementary file

6). Only a single L. infantum isolate had a reduced copy number of one. Increased copy number of

MAPK1 is thus associated with isolates from geographical locations with high historical antimonial

drug pressures such as the Indian subcontinent and to a lesser extend Africa. Another protein, the

membrane channel protein aquaglyceroporin (AQP1), is known to be involved in the uptake of pen-

tavalent antimonials: reduced copy number and expression have been associated with drug resis-

tance (Andrade et al., 2016; Gourbal et al., 2004; Monte-Neto et al., 2015; Mukherjee et al.,

2013), as has other genetic variation at this locus (Imamura et al., 2016; Monte-Neto et al., 2015;

Uzcategui et al., 2008). In our dataset, copy number at this locus was reduced in 6% and increased

in 35% of all isolates with small effect sizes (CN �2 to �1 and +1 to +3) but at least one copy of the

locus was always present (Figure 9—figure supplement 2B, Table 2). This may reflect resistance lev-

els in the different populations, while keeping in mind that structural variants generally have a
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Table 2. Summary of genetic variation across 151 isolates of the L. donovani complex for previously described loci involved in

resistance or treatment failure of antimonial drugs and Miltefosine.

locus/

complex

gene id

gene name

function

prediction

involved in

resistance

(R)/

treatment

failure (TF)

to drug: reference evidence from reference

gene copy number (gene

CN)

L. infantum,

JPCM5, v41

L.

infantum,

JPCM5,

v38

L. donovani

ortholog,

BPK282A1,

v41

H-locus LINF_230007700 LinJ.23.0280 LdBPK_230280 terbinafine

resistance gene

(HTBF), (YIP1)

Antimonials

(R)

Callahan and

Beverley, 1991;

Dias et al., 2007

The Leishmania H region is

frequently amplified in drug-

resistant lines and is

associated with metal

resistance (genes YIP1, MRPA,

PTR1).

Genes have an increased CN

in 30% (CN +1 to +44), and

reduced CN in 9% (CN �1).

37% of all samples have an

insertion including at least

three genes (always YIP1,

MRPA and argininosuccinate

synthase). These

amplifications are in groups

Ldon1 (42/45), Ldon3 (13/19)

and Ldon5 (1/8). The insertion

boundaries in isolates from

groups Ldon1 and Ldon3 are

shared (Figure 9—figure

supplement 1A).

LINF_230007800 LinJ.23.0290 LdBPK_230290 P-glycoprotein A

(MRPA);

pentamidine

resistance protein

1

ATP-binding

cassette (ABC)

transporter, ABC-

thiol transporter

Antimonials

(R)

Callahan and

Beverley, 1991;

Dias et al., 2007;

Leprohon et al.,

2009

Increased expression of

MRPA is often due to the

amplification of its gene in

antimony-resistant strains.

LINF_230007900 LinJ.23.0300 LdBPK_230300 argininosuccinate

synthase -

putative

Antimonials Grondin et al.,

1993;

Leprohon et al.,

2009

LINF_230008000 LinJ.23.0310 LdBPK_230310 Pteridine

reductase 1 (PTR1)

Antimonials

(R)

Callahan and

Beverley, 1991;

Dias et al., 2007

see above, evidence only for

H-locus in general

Antifolate

(R)

Vickers and

Beverley, 2011

Leishmania salvage folate

from their hosts. Thereby

folates are reduced by a

DHFR (dihydrofolate

reductase)-TS (thymidylate

synthase) and PTR1. PTR1 can

act as a metabolic bypass of

DHFR inhibition, reducing the

effectiveness of existing

antifolate drugs.

Mitogen-

activated

protein

kinase,

MAPK1

LINF_360076200 LinJ.36.6760 LdBPK_366760 LMPK, mitogen-

activated protein

kinase

protein

phosphorylation

Antimonials

(R)

Singh et al.,

2010;

Ashutosh et al.,

2012

Conflicting evidence between

up- and down-regulation of

Mitogen-Activated Protein

Kinase one between different

studies.

45% of all isolates showed an

increased CN, with all isolates

of Ldon1 andLdon3 being

affected and smaller fractions

in other L. donovani groups

(Figure 9—figure

supplement 2A).

Aqua-

glyceroporin,

AQP1

LINF_310005100 LinJ.31.0030 LdBPK_310030 Aquaglyceroporin

1, AQP1

drug

transmembrane

transport

Antimonials

(R)

Gourbal et al.,

2004;

Uzcategui et al.,

2008;

Monte-

Neto et al.,

2015;

Andrade et al.,

2016;

Imamura et al.,

2016

A frequently resistant L.

donovani population has a

two base-pair insertion in

AQP1 preventing antimonial

transport.

Increased resistance with

decrease in gene CN or

expression, while increase

leads to higher drug

sensitivity.

Gene CN deletions and

insertions of small effect sizes

(CN �2 to �1 and +1 to +3)

are present in 6% and 35% of

isolates but never leading to

loss of the locus.

Table 2 continued on next page
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chance to get lost during in vitro culturing as experienced by our samples (e.g. see

Domagalska et al., 2019).

The Miltefosine transporter in L. donovani (LdMT) together with its putative ß subunit LdRos3

have been shown to be essential for phospholipid translocation activity and thereby the potency of

the anti-leishmanial drug Miltefosine (Pérez-Victoria et al., 2006). In a drug selection experiment,

Miltefosine resistant parasites showed common and strain-specific genetic changes including dele-

tions at LdMT and single base mutations (Shaw et al., 2016). Neither LdMT, Ros3 or a hypothetical

protein deleted together with LdMT in a drug selection experiment (Shaw et al., 2016), showed a

reduction in gene copy number across our 151 isolates (Figure 9—figure supplement 2C,

Supplementary file 9). Moreover, no SNP variation was present in two codons (A691, E197;

Shaw et al., 2016) putatively associated with drug resistance (Table 2). The Miltefosine sensitivity

locus (MSL) was recently identified as a deletion associated with treatment failure in a clinical study

of patients with VL in Brazil (Carnielli et al., 2018). In the same study, further genotyping of the MSL

showed clinal variation in the presence of the locus ranging from 95% in North East Brazil to <5% in

the South East (N = 157), while no deletion was found in the Old World. The entire locus including

all four genes (Table 2) was completely deleted in four of our samples of the Linf1 group including

two of the four samples from Brazil (Cha001 1974, WC 2007) and in the two samples from Honduras

(HN167 1998, HN336 1993) (Figure 9B, Supplementary file 9) with deletion boundaries coinciding

with those reported previously (Carnielli et al., 2018). Another isolate, IMT373cl1 (collected

in Portugal, 2005) showed a deletion of a larger region (90 kb), reducing the local chromosome copy

Table 2 continued

locus/

complex

gene id

gene name

function

prediction

involved in

resistance

(R)/

treatment

failure (TF)

to drug: reference evidence from reference

gene copy number (gene

CN)

L. infantum,

JPCM5, v41

L.

infantum,

JPCM5,

v38

L. donovani

ortholog,

BPK282A1,

v41

Miltefosine

transporter

and

associated

genes

LINF_130020800 LinJ.13.1590 LdBPK_131590 Miltefosine

transporter, LdMT

phospholipid

transport

Miltefosine

(R)

Pérez-

Victoria et al.,

2006;

Shaw et al., 2016

Gene deletion or different

changes in two different

strains evolved in

promastigote culture for

Miltefosine resistance. strain

Sb-S: locus deletion and

A691P; strain Sb-R: E197D

15 isolates: +1 gene CNV

(CUK, Ldon1, Ldon2, Ldon3,

Ldon5)

LINF_130020900 LinJ.13.1600 LdBPK_131600 hypothetical

protein

unknown function Miltefosine

(R)

Shaw et al., 2016 Deleted along with the

Miltefosine transporter gene

in a single line evolved for

Miltefosine resistance in

promastigote culture.

three isolates: +1 gene CNV

(Ldon1, Linf1)

LINF_320015500 LinJ.32.1040 LdBPK_321040 Ros3, LdRos3 Vps23 core

domain

containing

protein - putative

Miltefosine

(R)

Pérez-

Victoria et al.,

2006

Putative subunit of LdMT;

LdMT and LdRos3 seem to

form part of the same

translocation machinery that

determines flippase activity

and Miltefosine sensitivity in

Leishmania.

one isolate: +1 gene CNV

(Ldon1)

Miltefosine

sensitivity

locus, MSL

LINF_310031200 LinJ.31.2370 LdBPK_312380 3’-nucleotidase/

nuclease -

putative

Miltefosine

(TF)

Carnielli et al.,

2018

MSL: a deletion of this locus

was associated with

Miltefosine treatment failure

in Brazil. While the frequency

of the MSL was still relatively

high in the North-East it was

almost absent in the South-

East of Brazil, and it was

absent in L.infantum/L.

donovani in the Old World.

Genes have a reduced CN in

55% (CN �1 to �8) and

increased in 4% (CN +1).

Four isolates, show a

complete loss of the MSL at

identical boundaries: WC,

Cha001, HN167 and HN336

(2/4 isolates from Brazil, 2/2

isolates from Honduras). Two

isolates show a reduction of

all four genes at this locus but

with various deletion

boundaries: IMT373cl1

(Portugal), CH35 (Cyprus)

(Figure 9B).

LINF_310031300 LinJ.31.2380 LdBPK_312380 3’-nucleotidase/

nuclease -

putative

Miltefosine

(TF)

Carnielli et al.,

2018

LINF_310031400 LinJ.31.2390 LdBPK_312390 helicase-like

protein

Miltefosine

(TF)

Carnielli et al.,

2018

LINF_310031500 LinJ.31.2400 LdBPK_312320,

LdBPK_312400

3–2-trans-enoyl-

CoA isomerase -

mitochondrial

precursor -

putative

Miltefosine

(TF)

Carnielli et al.,

2018
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number from four to two (Figure 9B). The sixth sample that showed a copy number decrease of all

four MSL associated genes, only showed a marginal and variable reduction in coverage and might

be better explained by noise in genome coverage (Figure 9B).

Population and species-specific selection
We investigated putative species-specific selection, summarizing selection across the genome using

the numbers of fixed vs. polymorphic and synonymous vs. non-synonymous sites for each species

across all genes: The a statistic, originally by Smith and Eyre-Walker (2002), is a summary statistic,

presenting the proportion of non-synonymous substitutions fixed by positive selection and is often

used to summarize patterns of selection in a species. In both, L. donovani and L. infantum, a was

negative, with �0.19 and �0.34, respectively, showing an excess of non-synonymous polymorphisms

but lacking a clear biological interpretation. Out of 8234 genes tested for departure of neutrality

using the McDonald-Kreitman test, only two and four genes showed signs of positive selection (p-

value<0.05, FDR = 1) and 11 and 12 an excess of non-synonymous differences (p-value<0.05,

FDR = 1) for L. donovani and L. infantum, respectively (Figure 9—figure supplement 3,

Supplementary file 11). Interestingly, one of the genes with putative signs of adaptive evolution in

L. donovani (LINF_330040400 v41, LinJ.33.3220 v38) was previously associated with in vivo enhanced
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Figure 9. Copy number variation of putative drug resistance genes. (A) Copy numbers (CNs) for all four genes on the H-locus are shown for all 151

samples across all 10 different (sub-)groups. (B) Genome coverage in the genomic regions surrounding the MSL in all six samples showing a deletion

and one sample with no CN reduction. Genome coverage for 50 bp windows is normalised by the haploid chromosome coverage and colours indicate

the somy equivalent coverage of the respective window. The genes, LinJ.31.2370, LinJ.31.2380, LinJ.31.2390 and LinJ.31.2400, are marked as black

horizontal lines. Colours of the sample names indicate group colours used throughout this study.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Copy number increase at the H-locus.

Figure supplement 2. Copy number variation of putative drug resistance genes.

Figure supplement 3. Measures of adaptive evolution.

Figure supplement 4. Gene ontology enrichment of marker genes with putative biological impact.
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virulence and increased parasite burden in vitro for L. major when overexpressed (Reiling et al.,

2010). In our dataset, this gene contained nine missense, 3 synonymous and 19 upstream/intergenic

SNP-variants differentially fixed between L. donovani and L. infantum (Supplementary file 4), which

might provide further candidates for differences in virulence between both species.

While genetic variants can become fixed in different populations by either neutral forces (genetic

drift) or positive selection, we took advantage of the genetic differentiation between groups to

search for group-specific SNPs that might be of biological relevance. We investigated whether par-

ticular functional categories (biological processes in Gene Ontology) were enriched among genes

containing high or moderate effect group- and species-specific SNP variants (Supplementary file

12). While most enrichment terms were specific to one marker set, the terms ‘protein phosphoryla-

tion’, ‘microtubule-based movement’ and ‘movement of cell or subcellular component’ were

enriched in five, three and two out of the nine tested SNP sets, respectively (Figure 9—figure sup-

plement 4). More group specific enrichments with potentially more easily interpretable biological

implications include 1) ‘response to immune response of other organism involved in symbiotic inter-

action’ for Ldon1, 2) ‘mismatch repair’ for Linf1 in response to oxidative stress and 3) ‘pathogenesis’

for the L. infantum – L. donovani species comparison (Figure 9—figure supplement 4). For the spe-

cies comparison, the enrichment of the term ‘pathogenesis’ was due to fixed differences of putative

functional relevance in genes including a protein containing a Tir chaperone (CesT) domain, a subtili-

sin protease and a Bardet-biedl syndrome one protein that are putative candidates for increased

pathogenicity in L. donovani (Table 3, Supplementary file 4). Tir (translocated intimin receptor)

chaperones are a family of key indicators of pathogenic potential in gram-negative bacteria, where

they support the type III secretion system (Delahay et al., 2002). Proteins containing these domains

are almost exclusive to kinetoplastids among eukaryotes. In L. donovani, a subtilisin protease (SUB;

Clan SB, family S8), has been found to alter regulation of the trypanothione reductase system, which

is required for reactive oxygen detoxification in amastigotes and to be necessary for full virulence

(Swenerton et al., 2010). The Bardet-biedl syndrome 1 (BBS1) gene in Leishmania was shown to be

Table 3. Candidate genes putatively involved in pathogenesis associated differences between L. donovani and L. infantum.

Candidates were identified through GO enrichment analysis of moderate to high effect variants between both species across our 151

isolates.

Gene name

Gene codes v41 (v38)
TritrypDB (http://tritrypdb.org/
tritrypdb/) Annotation

Fixed genomic variation
between
L. infantum and L. donovani
(changes L.inf > .don)

Evidence for
pathogenic function

Tir chaperone
protein

LINF_040012200
(LinJ.04.0710),
LINF_340038600
(LinJ.34.2950)

Tir chaperone
protein
(CesT) family/PDZ
domain
containing protein -
putative,
Tir chaperone
protein
(CesT) family -
putative

nt 362A > G; aa Glu121Gly
nt 594A > G; aa Gln198Gln
nt 1659A > C; aa Lys553Asn
nt 1703A > G; aa Asn568Ser

Part of secretion system to deliver
virulence
effector proteins into the host cell
cytosol in
gram-negative bacteria; secreted
proteins
require chaperones to maintain function
(Delahay et al., 2002).

Subtilisin
protease

LINF_130015300
(LinJ.13.0940 and
LinJ.13.0930*1,
-strand, are fused in v41
with an extra 54 bp in
between them)

subtilisin-like serine
peptidase

nt 2813T > G; aa Phe938Cys
nt 3346G > A; aa Gly1116Ser
nt 4389G > A; aa
Pro1463Pro*
nt 5014A > C; aa
Ser1672Arg*

Shown to be essential for full
virulence and involved in detoxification
of ROS in L.
donovani (Swenerton et al., 2010).

Bardet-biedl
syndrome
one protein

LINF_350047600
(LinJ.35.4250)

Bardet-Biedl
syndrome
one protein homolog
(BBS1-like protein 1) -
putative

nt 531C > T; aa Ser177Ser
nt 580G > A; aa Ala194Thr
nt 1038C > A; aa Arg346Arg
nt 1221T > C; aa Gly407Gly
nt 1310C > T; aa Ala437Val

Leishmania BBS1 knock-out mutants
have
reduced infectivity for in
vivo macrophages
and infection of BALB/c mice was
severely
compromised (Price et al., 2013).

*Nucleotide (nt) and amino acid (aa) changes in LinJ.13.0930*1 (v38) have been adapted to positions to its fused version LINF_130015300 (v41) in this table.

Positions for v38 can be found in Supplementary file 4.

Franssen et al. eLife 2020;9:e51243. DOI: https://doi.org/10.7554/eLife.51243 23 of 44

Research article Genetics and Genomics Microbiology and Infectious Disease

http://tritrypdb.org/tritrypdb/
http://tritrypdb.org/tritrypdb/
https://doi.org/10.7554/eLife.51243


involved in pathogen infectivity. BBS1 knock-out strains, as promastigotes in vitro, had no apparent

defects affecting growth, flagellum assembly, motility or differentiation but showed a reduced infec-

tivity for in vitro macrophages and the ability to infect BALB/c mouse of null parasites was severely

compromised (Price et al., 2013).

Discussion
Our whole-genome sequence data represents much of the global distribution of the L. donovani

species complex. Compared to previous genomic studies on the L. donovani complex that focused

on more geographically confined populations (Carnielli et al., 2018; Downing et al., 2011;

Imamura et al., 2016; Rogers et al., 2014; Teixeira et al., 2017; Zackay et al., 2018), our sampling

revealed a much greater genetic diversity. We identified five major clades of L. donovani that largely

reflect the geographical distribution of the parasites and their associated vector species

(Akhoundi et al., 2016). Some, such as the Middle Eastern group (Ldon4) are within themselves

diverse, and in this case represented by a few samples, suggesting that a deeper sampling of para-

sites in this region may be needed. In contrast, our data confirmed that the low diversity of the main

genotype group from the Indian subcontinent (Imamura et al., 2016) is indeed unusual, which might

be related to the epidemic nature of VL on the Indian subcontinent (Dye and Wolpert, 1988). The

main L. infantum clade is widespread and displays little diversity, although two subgroups represent

the classical MON-1 and non-MON-1 Mediterranean lineages which co-segregate in the same geo-

graphical regions interfering with isolation-by-distance relationships in that group (Figure 1A, Fig-

ure 1—figure supplement 1). Our data highlighted some weaknesses in previous typing systems for

characterising Leishmania using MLEE (Rioux et al., 1990) and MLMT (Schönian et al., 2011;

Schönian et al., 2008). We confirmed paraphyly of the zymodeme MON-37 across L. donovani

groups (see also Alam et al., 2009) and for the zymodemes MON-30 and MON-82 within the Ldon3

group (Figure 1—figure supplement 1). Moreover, the MON-1 zymodeme groups together para-

sites from the Mediterranean region and South America but also a sample from the genetically dis-

tinct Asian subgroup (Figure 1—figure supplement 1). While data from MLMT (e.g. Kuhls et al.,

2007 and Gouzelou et al., 2012) is much more congruent with our results, we explain diversity

within the previously assigned Cypriot population (Gouzelou et al., 2012) by hybridisation of some

of these isolates (Figures 1A and 4, Figure 4—figure supplement 1A) and also describe hybridisa-

tion in other groups (e.g. LEM3472, GE and LRC-L740) that was not apparent with microsatellite

markers (Kuhls et al., 2007).

Two regions emerged as apparent hot-spots of diversity in this species complex. The first is the

Eastern Mediterranean, where the high genetic diversity of parasites assigned to L. infantum appears

to be driven by hybridisation between L. infantum from China and a genotype identified in Cyprus

(i.e. CH33, 35 and 36) (Figure 4—figure supplement 8). This gave rise to the isolates from Çukurova

described previously (Rogers et al., 2014) and some other hybrid genotypes from Cyprus (CH32

and 34) and suggests parasite movement from Central Asia/China to the Eastern part of the Medi-

terranean in the relatively recent past. The phylogenetic origin of the five Cypriot isolates has been

unclear: they were placed in the paraphyletic zymodeme MON-37 of L. donovani (Antoniou et al.,

2008) but clustering based on microsatellite profiles placed them in a clade of L. infantum between

zymodeme MON-1 and non-MON-1 isolates (Gouzelou et al., 2012). Our data supports a deep-

branching clade of CH and CUK isolates distinct from other isolates of L. infantum (Figure 1A, Fig-

ure 1—figure supplement 1) but the precise phylogenetic position of this group varies somewhat

for different parts of the genome (Figure 4—figure supplement 8B). The origin of the pure, that is

‘non-hybrid’ Cypriot samples (CH33, 35, 36), however, is not completely resolved: they could be

either a distinct evolutionary linage within the L. donovani complex, or ancient hybrids between L.

infantum and L. donovani. The other geographical regions of high diversity within the L. donovani

complex is further South, encompassing the horn of Africa, the Arabian Peninsula and adjacent areas

of the Middle East. Some of this diversity has been reported showing the presence of two clearly dis-

tinct groups of L. donovani: one in North-East and the other one in East Africa (Zackay et al., 2018).

This genetic differentiation between both populations corresponds to their geographic separation

by the rift valley in Ethiopia with different ecology and vector species (Gebre-Michael et al., 2010;

Gebre-Michael and Lane, 1996) but hybrids between these populations have also been described

(Cotton et al., 2019). More striking is the high diversity of L. donovani lineages in the Arabian
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Peninsula and the Middle East, including lineages present on both sides of the Red Sea and hybrids

between groups present in this region and Africa (Ldon4 and other Ldon). The Middle East and adja-

cent regions may represent a contact zone where European, African and Asian lineages meet and

occasionally hybridise increasing local genetic diversity. Moreover, the hybrid samples GE, LEM3472

and LRC-L740 sampled in Sudan and Israel with putative parental ancestry from Sudan/Ethiopia

(Ldon3) as well as the Middle East (Ldon4) also suggest relatively recent parasite movements

between those geographical regions. More extensive sampling in both of these ‘hot-spot’ regions

would likely further improve our knowledge of the genetic diversity and geographic movements

within the L. donovani species complex. Besides these ‘diversity hot-spots’, many other regions were

sparsely sampled for our data collection and are under-explored by Leishmania researchers in gen-

eral. While we have few isolates in our main analysis from the New World, where VL is present in

much of Central America, and northern South America, we show that a total of 31 ‘MON-1’ samples

from Central/South America are closely related and likely of South-Western European origin. Two

different lineages (i.e. MON-1 and non-MON-1) containing European as well as American L. infantum

also suggest at least two introductions of the parasite into the New World (Figure 1—figure supple-

ment 2A), which are also broadly consistent with suggested ancient changes in the geographical dis-

tribution of the species complex (Lukes et al., 2007). Our sampling, however, remains sparse in

Central Asia, where both L. infantum and L. donovani may be present. From China we only have L.

infantum isolates, but there is likely to be a diverse range of L. donovani-complex parasites present

(Alam et al., 2014; Zhang et al., 2013).

While we identified many novel lineages that are hybrids between major groups present in our

study, it is likely that even with whole-genome variation data we are missing other admixture events

especially within groups: This is because admixture analysis is most suited to identify admixed sam-

ples between the given K groups, and heterozygosities are most prominent when hybridisation

occurs between genetically diverse strains. All of our known hybrid populations had elevated levels

of heterozygosity, but group Ldon3 was highly heterozygous without distinct genomic patterns of

hybridisation (Figure 3A). Clear genomic patterns of hybridisation can be undetectable when hybrid-

isation occurs frequently between closely related strains. This might be the case for the Ldon3 group

and is also supported by a steep decline of LD with genomic distance (Figure 5) and the mixed dis-

tribution of isolate specific haplotypes within the Ldon3 group (Figure 4—figure supplement 9B–

D). However, while we don’t have direct proof of hybridisation in the Ldon3 group, the generality of

the relationship between heterozygosity and hybrid origin remains unclear. We investigated evi-

dence for hybridisation from the admixture analysis (Figure 1A) at a range of values of the parame-

ter K (the number of distinct populations present in the data; Figure 4—figure supplement 6), also

considering that many of the assumptions of admixture analysis are likely not to hold in Leishmania

populations. However, this approach missed the known hybrids of the Çukurova population, which

were consistently identified as a separate, ‘pure’ population (Figure 4—figure supplement 6).

Therefore, we used an approach similar to that used by Rogers et al. (2014) to identify genome

regions that seem to be homozygous for each of the two putative parental groups of the hybrids.

While this haplotype-based approach could identify parents of the Çukurova isolates, it did not

clearly resolve the origins of other samples suggested to be hybrid by the admixture analysis. This

could be either because our sample collection does not include the parental lineage or a close rela-

tive, or because these samples are of much older hybrid origin, so that subsequent recombination

has erased the haplotype block structure we are looking for (e.g. see Rogers et al., 2014). Different

approaches are therefore needed to investigate recombination within populations. We also used the

level of linkage disequilibrium and particularly the decrease in LD with distance as an indicator of

recombination to show that the impact of recombination differs greatly between L. donovani com-

plex populations. However, LD is a complex measure affected by a range of other factors including

population structure and demographic factors (Slatkin, 1994), so we cannot directly quantify recom-

bination rates from observed patterns of LD in Leishmania. Additionally, we observed major differen-

ces in the allele frequency spectrum in different populations, in agreement with putative

recombination differences and the unique evolutionary history of each group.

The variation in coverage between chromosomes and unusual allele frequency distributions in our

isolates (Figure 2—figure supplement 2) confirmed the presence of extensive aneuploidy in our

samples, as observed for all Leishmania promastigote cultures investigated to date. In our study, this

variation in aneuploidy between samples reflected differences in the average chromosome copy
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number of a population of promastigote cells grown in vitro for each isolate, and showed no appar-

ent phylogenetic structure. We assume that this reflects the well-documented mosaic aneuploidy

present across Leishmania populations (Prieto Barja et al., 2017; Lachaud et al., 2014;

Sterkers et al., 2011), where aneuploidy variation is present between cells within a parasite popula-

tion. This variation could be selected upon and quickly change mean observed aneuploidies in a new

environment, such as in vitro culture. However, we cannot directly address aneuploidy mosaicism

with our data due to pooling cells within a strain for sequencing. To address this issue in future stud-

ies and understand the dynamics of Leishmania aneuploidy in infections and in culture, single-cell

approaches seem to be most promising (e.g. Dujardin et al., 2014).

Similarly, our data reflects the genetic variability of a set of isolates grown as promastigotes in

axenic culture in vitro, a very different environment, and different life stage of the parasite to that

present in patients. This means that we may miss variation present within host parasite populations

that are lost during parasite isolation or subsequent growth, and that our results may be affected by

selection to in vitro environments: In particular aneuploidy patterns in vectors and mammalian hosts

were shown to differ from that in culture (Domagalska et al., 2019; Dumetz et al., 2017), and have

other variants in particular during long term in vitro adaptation (e.g. Sinha et al., 2018;

Bussotti et al., 2018). Given the breadth of global isolate collection used in our study it was not

possible for us to ensure that common culture conditions were used for all the isolates. A recent

approach to directly sequence Leishmania genomes in clinical samples has given some first insights

into the effects of parasite culture in vitro and will allow future studies of Leishmania genome varia-

tion to avoid this potential bias (Domagalska et al., 2019).

Changes in gene dosage – of which aneuploidy is just the most striking example – have been

shown to have a profound impact on gene expression in Leishmania, which lacks control of transcrip-

tion initiation (Campbell et al., 2003). We identified extensive copy number variation, including

both very large structural duplications and deletions and smaller-scale variants affecting single

genes. Large structural variants are particularly common on chromosome 35. Here, eight strains

showed a range of large CNVs (30–675 kb; Figure 7—figure supplement 2, Supplementary file 7)

at the 3’ end of the chromosome that overlapped with the CD1/LD1 locus previously described as

being maintained as extrachromosomal linear or circular molecules of various lengths in several

Leishmania species (Lemley et al., 1999; Segovia and Ortiz, 1997; Tripp et al., 1992; Tripp et al.,

1991). Our analysis indicated at least 9 duplications of various lengths containing the CD1/LD1

locus, but our short-read sequencing data was insufficient to reveal the structure/insertion type in

the genome. The CD1/LD1 locus is also known to arise spontaneously in independent in-vitro cell

lines (Segovia and Ortiz, 1997) and encodes the biopterin transporter (Kündig et al., 1999). How-

ever, whether the CNVs we observed were amplified before or during culturing of our isolates or

might provide a growth advantage in certain media would require direct experimental investigation.

Many CNVs appeared too widespread across different clades to have evolved neutrally. Particularly

a common deletion on chromosome 27 (Figure 7A) shared identical breakpoints across 22 samples.

As no repeat structures were present at the breakpoints that could explain independent deletion

events causing identical breakpoints (Figure 7—figure supplement 7), this suggests that the dele-

tion might be an ancient segregating polymorphism. While it is difficult to identify the specific func-

tional relevance of these variants without phenotypic or functional information, these might be

interesting targets for future functional studies. Additionally, we demonstrated the utility of genome

data to understand functional genetic variation for variants with previously known impacts on pheno-

types such as drug resistance. The deletion at the MSL locus, previously associated with Miltefosine

treatment failure, is restricted to the New World and was considered to have evolved within Brazil

(see also Carnielli et al., 2018) but for the first time we reported this variant in Honduras, suggest-

ing a wider geographical wider distribution than previously appreciated. Moreover, varying local fre-

quencies and copy numbers of the H-locus and the MAPK1 duplication in India and North East

Africa suggest that resistance against antimonials is more widespread on the Indian subcontinent,

and may mediate a higher level of resistance than in other locations.

Our study provides the first comprehensive view of the globally distributed, whole-genome

genetic diversity of the two most pathogenic species of Leishmania and any Leishmania species to

date. Our ability to capture a much more comprehensive picture of the genetic variation in these

species allowed us to identify differences between species with respect to diversity and isolation-by-

distance, reveal the impact of aneuploidy turnover on genetic diversity and showed different
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amounts of recombination in different geographical regions. The investigation of CNVs with respect

to the role of repeated sequences was shown in a broader genomic context and we identified partic-

ular regions as apparent hotspots for the generation of genetic diversity in this species. Moreover,

the availability of this broad and deep genomic resource for L. dononvani and L. infantum has

allowed us to identify and understand the ancestry of hybrid strains in many foci. This work provides

a valuable resource in investigating individual loci to understand functional variation as well as plac-

ing more focused studies into a global context.

Materials and methods

Choice of samples and sample origin
The genetic diversity of 151, mostly clinical isolates, from the L. donovani complex, and spanning

the entire global distribution of this species complex was investigated to reveal the complex’s

whole-genome diversity on a global scale. This includes 97 isolates that we sequenced specifically

for this study, complemented with whole-genome sequence data of 33 isolates from the Indian sub-

continent (Imamura et al., 2016), 11 from a known Turkish hybrid population (Rogers et al., 2014),

seven from Ethiopia (N = 1, Rogers et al., 2011); N = 6, Zackay et al., 2018), two from Sri Lanka

(Zhang et al., 2014) and the whole-genome sequences of the JPCM5 reference strain

(Peacock et al., 2007). The samples taken from other studies present a large proportion of all avail-

able sequences for Leishmania to date. Of regions where the genetic diversity had previously already

been described for many samples, we chose subsets representing the known genetic diversity (i.e.

Imamura et al., 2016; Zackay et al., 2018). In an additional analysis (Figure 1—figure supplement

2B), we included 26 isolates from three different states in Brazil (Carnielli et al., 2018) to confirm

reduced genetic diversity in South America. The 97 samples sequenced for this study are deposited

in ENA under the study accession numbers: PRJEB2600 (ERP000767), PRJEB2724 (ERP000966),

PRJEB8947 (ERP009989) and PRJEB2115 (ERP000169) (https://www.ebi.ac.uk/ena/data/view). All

metadata on the 151 isolates including ENA accession numbers of individual samples are summa-

rized in Supplementary file 1 (see also https://microreact.org/project/_FWlYSTGf; Argimón et al.,

2016). The promastigote cultures and DNA samples came from different Leishmania strain collec-

tions: The London School of Hygiene and Tropical Medicine; The Hebrew University, Jerusalem

WHO Reference Centre for the Leishmaniases; The Academic Medical Centre (University of Amster-

dam), Medical Microbiology, Section Parasitology; The Bangladesh Agricultural University, Mymen-

singh; The Centre National de Référence des Leishmanioses Montpellier; The Istituto Superiore di

Sanità Roma; The Hellenic Pasteur Institute Athens; The Koret School of Veterinary Medicine,

Hebrew University, Jerusalem, Israel; The Coleção de Leishmania do Instituto Oswaldo Cruz, Rio de

Janeiro; The University of Khartoum; The Universitat Autònoma de Barcelona; The Institute of Tropi-

cal Medicine Antwerp, and The Charité University Medicine Berlin. Only previously collected isolates

from humans and animals have been used in this study. The parasites from human cases had been

isolated as part of normal diagnosis and treatment with no unnecessary invasive procedures and

data on human isolates were encoded to maintain anonymity.

Whole-genome sequencing of clinical isolates
The 97 isolates new to this study were grown as in vitro promastigote culture to generate material

for sequencing as had been done for the 54 remaining sequenced isolates taken from other sources

(Imamura et al., 2016; Peacock et al., 2007; Rogers et al., 2014; Rogers et al., 2011;

Zackay et al., 2018; Zhang et al., 2014). Of all these, most (62%) were not cloned and regrown

from a single cell before sequencing; 6% of the isolates had been cloned and 32% were of unknown

status prior to sequencing (Supplementary file 1). Genomic DNA was extracted by the phenol-chlo-

roform method and quantified on a Qubit (Qubit Fluorometric Quantitation, Invitrogen, Life Technol-

ogies). DNA was then sheared into 400–600-base pair fragments by focused ultrasonication (Covaris

Adaptive Focused Acoustics technology, AFA Inc, Woburn, USA). Standard indexed Illumina libraries

were prepared using the NEBNext DNA Library Prep kit (New England BioLabs), followed by amplifi-

cation using KAPA HiFI DNA polymerase (KAPA Biosystems). 100 bp paired-end reads were gener-

ated on the Illumina HiSeq 2000 according to the manufacturer’s standard sequencing protocol

(Bronner et al., 2014).
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Read mapping pipeline
Reads were mapped with SMALT (RRID:SCR_005498, v0.7.4, Ponstingl, 2010) using the parameters:

‘–x –y 0.9 –r 1 –i 1500’ specifying independence of paired-end reads, a minimum fraction of 0.9 of

matching bases, reporting of a random best alignment if multiple are present and a maximum insert

size of 1500 bp against the reference genome JPCM5 of L. infantum (MCAN/ES/98/LLM-877, Tri-

TrypDB v38, RRID:SCR_007043; Aslett et al., 2010). Mapped reads were sorted and duplicate reads

were marked with picard ‘MarkDuplicates’ (RRID:SCR_006525, v1.92, https://broadinstitute.github.

io/picard/). For resulting individual bam files per isolate, indels were called and local realignment

was performed with GATK using the ‘RealignerTargetCreator’ and ‘IndelRealigner’ with default set-

tings (RRID:SCR_001876, v2.6–4, DePristo et al., 2011).

Reference genome masking
We developed a custom mask for low complexity regions and gaps in the reference genome. To

identify low complexity regions, we used the mappability tool from the GEM library (release3,

Derrien et al., 2012). Gem-mappability was run with the parameters -l 100 m 5 -e 0 --max-big-

indel-length 0 --min-matched-bases 100, specifying a kmer length of 100 bp with up to 5 bp

mismatches. This gives the number of distinct kmers in the genome, and we calculated the unique-

ness of each bp position as the average number of kmers mapping a bp position. Any base with a

GEM uniqueness score >1 was masked in the reference genome including a flanking region of 100

bp at either side. This approach masked 12.2% of the 31.9 Mb genome.

Determination of sample ploidies
To determine individual chromosome ploidies per isolate the GATK tool ‘DepthOfCoverage’ (RRID:

SCR_001876, v2.6–4) was used to obtain per-base read depth applying parameters: ‘--omitInter-

valStatisticsX--omitLocusTableX--includeRefNSitesX--includeDeletionsX--

printBaseCounts’. Results files were masked using our custom mask (see ‘Reference Genome

Mask’). Summary statistics were calculated per chromosome, including median read depth. The

median read depth for each chromosome was used to estimate chromosome copy number, somy,

for each sample using an Expectation-Maximization approach previously described in Iantorno et al.

(2017). For a few isolates where the coverage model appeared to be overfitting (high deviance val-

ues), somy estimates were manually curated by examining both coverage and allele frequency data.

Where allele frequency distributions did not support high somy values, they were altered so that the

majority of chromosomes were disomic and individual errors were corrected to fit clear somy expect-

ations suggested by the respective allele frequency spectra.

Somy evaluation based on allele frequency profiles
For isolates with high genome-wide heterozygosity ( > = 0.004) peaks of allele frequency distribu-

tions were estimated for chromosomes with at least 100 SNPs using the density function (stats pack-

age, R Development Core Team, 2013). After peak estimation of allele frequency distributions by

isolate and chromosome unreasonable peaks were removed, that is the ones that are too low

(smaller than 0.2 of the highest peak). The estimated peak vector for each chromosome and isolate

were then compared to peak distributions expected for the respective somy, for example for a dip-

loid, triploid and tetraploid chromosome we expect peaks only at the frequencies 1

2
;

1

3
& 2

3
and

1

4
& 2

4
& 3

4
, respectively. Deviations were calculated as the sum of square roots of absolute differences

to the closest matched peaks of expected peak distributions. Peak estimates are shown in Figure 4—

figure supplement 2 and deviations between coverage and frequency based somy estimates in Fig-

ure 4—figure supplement 5.

Variant calling
Variant calling was done following the Genome Analysis ToolKit (GATK, RRID:SCR_001876) best-

practice guidelines (Van der Auwera et al., 2013) with modifications detailed below. Given the

aneuploidy of Leishmania, we considered individual somies per chromosome and isolate: the GATK

‘HaplotypeCaller’ (RRID:SCR_001876, v3.4–0, DePristo et al., 2011) was used with the parameters

‘–sample_ploidy SOMY -dt NONE –annotateNDA’ and additionally all-sites files were generated by

adding the additional flag ‘-ERC BP_RESOLUTION’ to the above HaplotypeCaller command.
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Individual vcf files (by chromosome and isolate) were processed, filtered and combined with custom

made scripts implementing the following steps: only SNPs outside masked regions (see ‘Reference

Genome Masking’) were extracted; SNPs were hard filtered excluding genotypes failing to pass at

least one of the following criteria: DP >= 5*SOMY, DP <= 1.75*(chromosome median read depth),

FS <= 13.0 or missing, SOR <= 3.0 or missing, ReadPosRankSum <= 3.1 AND

ReadPosRankSum >= �3.1, BaseQRankSum <= 3.1 AND BaseQRankSum >= �3.1, MQRank-

Sum <= 3.1 AND MQRankSum >= �3.1, ClippingRankSum <= 3.1 AND ClippingRankSum >= �3.1.

An additional masking was applied, based on the all-sites base quality information output by GATK

HaplotypeCaller (RRID:SCR_001876, v3.4–0, DePristo et al., 2011): DP >= 5*SOMY, DP <= 1.75*

(chromosome median read depth) and GQ >= 10. Resulting samples were combined and SNPs with

all reference or missing genotypes were removed.

Phylogenetic reconstruction
For phylogenetic reconstruction from whole-genome polymorphism data, all 395,602 SNPs that are

polymorphic within the species complex and have a maximum fraction of 0.2 non-called sites across

all 151 samples were considered. Nei’s distances were calculated for bi-allelic sites per chromosome

with the R package StAMPP (v1.5.1, Pembleton et al., 2013), which takes into account aneuploidy

across samples. Resulting distances matrices of Nei’s distances per chromosome were weighted by

chromosomal SNP count forming a consensus distance matrix, that was used for phylogenetic recon-

struction with the Neighbor-Joining algorithm implemented in the R package APE (RRID:SCR_

017343, v5.2, Saitou and Nei, 1987). For rooting of the tree, the phylogenetic reconstruction was

repeated using three additional outgroup samples, of L. major (LmjFried, ENA: ERS001834;

Rogers et al., 2011), L. tropica (P283, ENA: ERS218438; Iantorno et al., 2017) and L. mexicana

(LmexU1103 v1, ENA: ERS003040; Rogers et al., 2011) (https://www.ebi.ac.uk/ena) using a total of

1,673,461 SNPs. Bootstrap replicates were generated by calculating distances matrices of Nei’s dis-

tances for 10 kb windows and randomly sampling windows with replacement for a total of 1000

bootstrap replicates. For each bootstrap-replicate Neis’ distances were summed up across windows,

trees were generated with neighbour-joining and bootstrap support was provided for major branch-

ing nodes.

Phylogenetic reconstruction of the L. infantum Linf1 group including
additional brazilian isolates
Sequence reads of all 47 samples from the Linf1 group and of the 26 samples additional L. infantum

strains isolated from human infections in Brazil (Carnielli et al., 2018) were trimmed with Trimmo-

matic (RRID:SCR_011848, v0.39, Bolger et al., 2014) including removal of paired-end adaptors

using the options: ‘ILLUMINACLIP:PEadaptors.fa:2:30:10 TRAILING:15 SLIDINGWINDOW:4:15 MIN-

LEN:50’. Trimmed reads were mapped using BWA (RRID:SCR_010910, v0.7.17, Li and Durbin,

2009) using the bwa mem -M option. SNPs were called using GATK (RRID:SCR_001876, v4.1.2.0,

DePristo et al., 2011): First, g.vcf files were generated for individual samples with the ‘Haploty-

peCaller’ and parameters ‘-ERC GVCF --annotate-with-num-discovered-allelesX--sam-

ple-ploidyX2’. Then individual g.vcf files were combined using ‘GenomicsDBImport’, SNPs across

all samples were called using ‘GenotypeGVCFs’ and hard filtered using parameters “QD <2.0,

MQ <50.0, FS >20.0, SOR > 2.5, BaseQRankSum < �3.1, ClippingRankSum < �3.1,

MQRankSum <�3.1, ReadPosRankSum <�3.1 and DP <6’. The resulting vcf file were analysed in R:

only SNPs with a missing fraction across samples < 0.2 were retained; Nei’s distances between sam-

ples were called using the R package StAMPP (v1.5.1, Pembleton et al., 2013) and phylogenetic

trees calculated with neighbour joining with the r package ape (RRID:SCR_017343, v5.3,

Paradis et al., 2004).

Phylogenetic reconstruction of maxicircles
Sequence reads were mapped against the maxicircle DNA of the reference strain, LV9 (MHOM/ET/

1967/HU3), of L. donovani (TriTrypDB v46, RRID:SCR_007043) with SMALT (RRID:SCR_005498,

v0.7.4, Ponstingl, 2010) using parameters: ‘-x -y 0.8 r �1 -i 1500’ and duplicates were marked with

picard, ‘MarkDuplicates’ (RRID:SCR_006525, v1.92, https://broadinstitute.github.io/picard/). Local

indel realignments were performed on the resulting alignments with GATK using the
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‘RealignerTargetCreator’ and ‘IndelRealigner’ with default settings (RRID:SCR_001876, v3.4–0,

DePristo et al., 2011) and subsequently filtered for a mapping quality of 20 and proper pairs using

samtools, parameters ‘-q 20 f 0 � 0002 F 0 � 0004 F 0 � 0008’ (RRID:SCR_002105, v1.3, Li et al.,

2009) SNP and Indel variants were called, hard filtered, selected and transformed to fasta sequences

using GATK tools HaplotypeCaller, VariantFiltration, and FastaAlternateReferenceMaker (RRID:SCR_

001876, v3.4–0, DePristo et al., 2011). Used parameters include: ‘–sample_ploidy 1 -dt NONE –

annotateNDA’ (HaplotypeCaller), ‘QD <2.0, MQ <40.0, FS >13.0, SOR > 4, BaseQRankSum > 3.1 ||

BaseQRankSum < �3.1’, ClippingRankSum > 3.1 || ClippingRankSum < �3.1, MQRankSum >3.1 ||

MQRankSum <�3.1, ReadPosRankSum >3.1 || ReadPosRankSum <�3.1, DP > $DPmax, DP <

$DPmin (SNP, VariantFiltration), ‘QD <2.0 || FS >200.0 || ReadPosRankSum <�20.0’ (Indel, VariantFil-

tration) and ‘-IUPAC 1’ (FastaAlternateReferenceMaker). We determined maxicircle coverage of indi-

vidual isolates using samtools depth (RRID:SCR_002105, v1.3, Li et al., 2009). Not all samples

contained sufficient maxicircle DNA (likely depending on the DNA extraction protocol used) (Fig-

ure 4—figure supplement 4A). We therefore only used samples that had a medium coverage of at

least 20, resulting in 116 samples (Figure 4—figure supplement 3 and 4, Supplementary file 3) for

subsequent analysis. As in the repetitive region of the maxicircle high quality mapping was not pres-

ent, we assessed the minimum coverage across all 116 ‘good coverage’ samples and based on that

chose a region with a minimum coverage across those samples >= 10 for subsequent alignment and

phylogenetic reconstruction (positions 984 to 17,162, Figure 4—figure supplement 4B). Resulting

fasta sequences of individual maxicircles per isolates were aligned using MUSCLE (RRID:SCR_

011812, v3.8.31, Edgar, 2004) with default parameter settings and the phylogeny was reconstructed

with RaxML (RRID:SCR_006086, v7.0.3, Stamatakis, 2006) using parameters: ‘raxmlHPC -f a -m

GTRGAMMA -p 12345 -x 12345 -# 100’.

Gene-feature annotation and GO enrichment analysis
All SNPs were annotated with gene features using the software SNPeff (RRID:SCR_005191, v4.2,

Cingolani et al., 2012). Annotations for the reference genome L. infantum, JPCM5, were down-

loaded from TriTrypDB (v38, RRID:SCR_007043; Aslett et al., 2010). Several gene sets of interest

were subsequently tested for Gene ontology (GO, RRID:SCR_002811) term enrichments for the

ontology ‘biological process’. GO mappings for L. infantum genes were downloaded from TriTrypDB

(v38, RRID:SCR_007043), where 4704 of the 8299 annotated coding genes were also associated with

a GO term. Enrichment of functional categories was tested using the weightFisher algorithm in

topGO (RRID:SCR_014798, v2.34.0, Alexa et al., 2006) sing all genes annotated in the ‘gene to GO’

mapping file (v38). GO categories enriched with a p-value<0.05 (test: weightFish) were subsequently

visualised with Revigo (RRID:SCR_005825, http://revigo.irb.hr/, assessed: February 2019,

Supek et al., 2011) using default settings and rectangle sizes normalized by absolute p-value.

Population structure and IBD analysis
To run ADMIXTURE (RRID:SCR_001263, v1.23, Alexander et al., 2009), SNP genotype calls were

collapsed from polysomic to disomic for all chromosomes and only biallelic SNPs were included.

SNPs were filtered and thinned, removing SNPs with copies of the minor allele in less than four sam-

ples and one of two neighbouring SNPs with a minimum distance <250 bp. Using a five-fold cross-

validation (CV) the optimal values of K (smallest CV error) was determined to be 8 and 11 but we

also explored different K values. The value of K chosen was robust to different CV schemes. For IBD

analysis, we calculated correlations between genetic and geographical pairwise distances between

isolated strains using the Mantel test (R package ade4, v1.7–13, Dray and Dufour, 2007). Genetic

distances were estimated as Neis’ D based on genome-wide SNP information using the R package

StAMPP (v1.5.1, Pembleton et al., 2013). Geographic distances were calculated as geodesic distan-

ces between the respective countries of sample origin using the R package Imap (v1.32).

Haplotype-based analysis of hybridisation in CUK isolates
We used SNP calls across all the original 12 CUK isolates from Rogers et al. (2014) and called frac-

tions of heterozygous alleles and homozygous differences from the JPCM5 reference for 5 kb win-

dows for each isolate. Mean heterozygous and homozygous fractions per window were calculated as

genomic regions with either no SNP or increased number of homozygous differences (see also
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Rogers et al., 2014). Putative parent blocks were identified using consecutive windows with mean

heterozygous fractions < 0.0002 (1 SNP/5 kb) and mean homozygous fractions either <0.0004 (2

SNP/5 kb) for the JPCM5-like parent or >0.001 (5 SNP/5 kb) for the unknown parent. Those thresh-

olds are quite stringent (Figure 4—figure supplement 7), but allowed conservative calling of puta-

tive parental haplotype regions. For each parent, we selected the largest four regions conditioning

on at most one block per chromosome (resulting block sizes from 150 to 215 kb; Figure 4—figure

supplement 7). Phylogenetic trees for each of the eight regions were then reconstructed based on

polyploid genotypes of all 151 isolates and three outgroups (LmjFried, L. major, ENA: ERS001834;

P283, L. tropica, ENA: ERS218438; LmexU1103 v1, L. mexicana, ENA: ERS003040; https://www.ebi.

ac.uk/ena) using Nei’s distances calculated with StAMPP (v1.5.1, Pembleton et al., 2013) and the

neighbour joining algorithm (R package ape, v5.2) in R (Supek et al., 2011).

Population genomics characterisation of the groups
For the population genomics characterization of the largest groups identified based on the global

phylogeny (Figure 1A), isolates that were identified as putative mixtures of clones were removed.

These were BPK157A1 (Ldon1), GILANI (Ldon3), LRC-L53 (Ldon5) and Inf152 (Linf1) and their respec-

tive groups are indicated by an asterisk (*). Polyploid genotype calls were transformed into diploid

calls by transforming multiploid heterozygous sites into diploid heterozygous sites and polyploid

homozygotes into diploid homozygotes. Linkage disequilibrium for each group was then calculated

as genotype correlations of the transformed diploid calls using vcftools (RRID:SCR_001235, v0.1.14,

parameter: --geno-r2) (Danecek et al., 2011). For each group LD was calculated including all

available samples in a group. For groups containing more than seven samples, three ‘pseudo-repli-

cates’ were generated by random sampling without replacement. This way results were comparable

between groups and the smallest groups containing only seven samples. FST between all group pairs

was calculated for polymorphic sites with a minimum fraction of 0.8 called sites across all 151 sam-

ples as described in ‘Phylogenetic reconstruction’ using the R package StAMPP (v1.5.1,

Pembleton et al., 2013).

Genomic characterisation of individual isolates
Within isolate genome-wide heterozygosity was calculated using the formula:

1�
1

m

Xm

j¼1

Xkj

i¼1

pij2

where pi is the frequency of the ith of k alleles for a given SNP genotype and the 1st summation

sums over all m SNP loci for a given isolate. Here, genotype calls consider the correct somy for each

isolate and chromosome as described above (see ’Variant calling’). Isolate specific allele frequency

spectra were obtained using mapped bam files including duplicate identification and indel realign-

ment as described above (see ’Read Mapping Pipeline’). Bam files were subsequently filtered using

samtools view (RRID:SCR_002105, v1.3, Li et al., 2009) to only keep reads mapped in a proper pair

with mapping quality of at least 20. Filtered bam files were summarised using samtools mpileup

(RRID:SCR_002105, v1.3, Li et al., 2009) with arguments -d 3500 -B -Q 10 limiting the per sample

coverage to 3500, disabling probabilistic realignment for the computation of base alignment quality

and a minimum base quality of 10. The resulting mpileup file was converted to sync format summa-

rising SNP allele counts per isolate using the mpileup2sync.jar script requiring a minimum base qual-

ity of 20 (Kofler et al., 2011). For the 11 samples with extreme allele frequency spectra,

heterozygous SNPs were additionally filtered for the highest SNP calling quality of 99 (~10�10 proba-

bility of an incorrect genotype) and alternate alleles that were called as homozygous alternate alleles

in at least five other isolates to confirm the presence of the skewed allele frequency spectra (Fig-

ure 4—figure supplement 11).

Copy number variation
To identify large copy number variants (CNVs), realigned bam files for each sample were filtered for

proper-pairs and PCR or optical duplicates were removed using samtools view (RRID:SCR_002105,

v1.3, Li et al., 2009). Coverage was then determined using bedtools genomecov (RRID:SCR_

006646, v2.17.0) with parameters: ‘-d -split’ (Quinlan and Hall, 2010). Large duplications and
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deletion were identified using custom scripts in R (R Development Core Team, 2013): genome cov-

erage was determined for 5 kb non-overlapping windows along the genome and each window was

normalized by the haploid chromosome coverage of the respective chromosome and sample (i.e.

median chromosome coverage divided by somy of the respective chromosome and sample). Large

CNVs were identified through stretches of consecutive windows with a somy-normalized median cov-

erage >= 0.5 or<=�0.5 for duplications and deletions, respectively, a minimum length of 25 kb and

a median normalized coverage difference across windows >= 0.9 (Supplementary file 6). To identify

large CNVs across samples at identical positions and variant type, we grouped CNVs across samples

with identical start and end positions within <= 10 kb (i.e. up to two 5 kb windows difference)

(Supplementary file 7). CNVs of individual genes were determined based on the filtered bam files

(see genome coverages) with bedtools coverage (RRID:SCR_006646, v2.17.0) using parameters ‘-d -

split’ (Quinlan and Hall, 2010) and analysing gene coverages in R (R Development Core Team,

2013). The coverage of each gene was approximated by its median coverage and normalized by the

haploid coverage of the respective chromosome and sample (Supplementary file 9).

Identification of repeated sequences in the reference genome of L.
infantum
Repeated sequences in the JPCM5 L. infantum reference had previously been identified for assembly

v3 (GeneDB, RRID:SCR_002774) in Ubeda et al. (2014). We obtained the respective reference

sequence from the author as v3 was no longer available on GeneDB. Repeated sequences were

extracted based on this reference and positional information from Ubeda et al. (2014) with bedtools

getfasta -s (RRID:SCR_006646, v2.29.0, Quinlan and Hall, 2010). Locations of the extracted repeat

sequences in the reference genome JPCM5 (TriTrypDB v38, RRID:SCR_007043; Aslett et al., 2010)

were identified with nucmer using default parameters (Marçais et al., 2018). 100% matches of the

repeats in the new reference genome were annotated with the respective RAG number

(Ubeda et al., 2014). A comparison of the previously used reference genome used for repeat identi-

fication in Ubeda et al. (2014) and version v38 (TriTryDB) with nucmer (Marçais et al., 2018) further

showed a missing region on chromosome 27 of 269,698 bp in the previous genome version corre-

sponding to positions 199,468–269,164 in v38 (Figure 7—figure supplement 8A). As this region

contained a deletion of interest on chromosome 27 (Figure 7A, Figure 7—figure supplement 7A)

common to a subset of our strains, we also screened for unknown repeats in the respective region

using nucmer with parameters ‘--maxmatchX--nosimplifyX--minclusterX30X--minmatchX7’

within the region: LinJ.27:190000–300000 in the reference genome TriTrypDB v38 (Figure 7—figure

supplement 8B, Supplementary file 13).

Measures of selection
For all genes with annotated mRNAs in TriTrypDB (v38, RRID:SCR_007043; Aslett et al., 2010), the

longest open reading frames (ORF) were identified using a custom python script, resulting in 8234

genes with and five without ORFs. ORFs were then edited for SNP variation in both species using

custom python scripts. Numbers of polymorphic differences within a species versus fixed differences

to an outgroup of both, non-synonymous and synonymous sites, were annotated and tested for sig-

nificance with Fisher’s exact test using previously implemented software (Holloway et al., 2007).

This was done for each gene and species always using the respective other species as an outgroup

and removing sites polymorphic in the outgroup. An unbiased version of the a statistic (Smith and

Eyre-Walker, 2002; Stoletzki and Eyre-Walker, 2011), intended to estimate the proportion of non-

synonymous substitutions fixed by positive selection across genes, was calculated with a custom R

script.

Data availability
The 97 samples sequenced for this study are deposited in ENA under the study accession numbers:

PRJEB2600 (ERP000767), PRJEB2724 (ERP000966), PRJEB8947 (ERP009989) and PRJEB2115

(ERP000169) (https://www.ebi.ac.uk/ena/data/view). All metadata on the 151 isolates including ENA

accession numbers of individual samples are summarized in Supplementary file 1 (see also https://

microreact.org/project/_FWlYSTGf; Argimón et al., 2016). Summary statistics and annotations from

this study are available in Supplementary files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. Analysis
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scripts generated and used in this study along with the corresponding data files are available on

github https://github.com/susefranssen/Global_genome_diversity_Ldonovani_

complex. (Franssen and Cotton, 2020; copy archived at https://github.com/elifesciences-publica-

tions/Global_genome_diversity_Ldonovani_complex).
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genes with median copy number change across all 151 samples unequal to 0. (B) Enriched GO terms

across genes that show a median copy number decrease (<=1). (C) Enriched GO terms across genes

that show a median copy number increase (>=1). (D) Enriched GO terms across genes that show a
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median copy number increase (>=4). (E) Listed are genes that contribute to the GO enrichment of

genes with a median copy number change <= 1,>=1 and>=4 across all samples, respectively.

. Supplementary file 11. Metadata on genes in L. donovani and L. infantum with a McDonald-Kreit-

man test p-value<0.05.

. Supplementary file 12. GO term enrichment for genes including marker SNPs for each of the eight

identified groups and between L. infantum and L. donovani samples that show predicted effects of

moderate to high effect (SNPeff, Cingolani et al., 2012).

. Supplementary file 13. Repeated sequences on chromosome 27, region 190,000–300,000, refer-

ence genome L. infantum, JPCM5, v38 TriTrypDB identified with nucmer (self comparison, parame-

ters –maxmatch –nosimplify –mincluster 30 –minmatch 7).

. Transparent reporting form

Data availability

The 97 samples sequenced for this study are deposited in ENA under the study accession numbers:

PRJEB2600 (ERP000767), PRJEB2724 (ERP000966), PRJEB8947 (ERP009989) and PRJEB2115

(ERP000169) (https://www.ebi.ac.uk/ena/data/view). Full accession details/sample accessions of

these 97 samples are: PRJEB2600 (ERS104335, ERS104333, ERS104323, ERS218540, ERS177300,

ERS177299, ERS177296, ERS177295, ERS218539, ERS082780, ERS097150, ERS097157, ERS082781,

ERS097158, ERS082784, ERS3773247, ERS097154, ERS104327, ERS104322, ERS104329,

ERS104330, ERS177293, ERS177294, ERS3773245, ERS104316, ERS104318, ERS097142,

ERS3773246, ERS3773248, ERS104315, ERS097138, ERS066256, ERS082776, ERS104324,

ERS082775, ERS082777, ERS066257, ERS082774, ERS066262, ERS082773, ERS3773249,

ERS3773250, ERS066261, ERS3773251, ERS104312, ERS097135, ERS104323, ERS040396,

ERS3773252, ERS3773254, ERS3773253, ERS3773255, ERS3773256, ERS097153, ERS104320,

ERS066265, ERS082783, ERS082782, ERS104313, ERS066259, ERS097141, ERS097136, ERS104325,

ERS097143, ERS097148, ERS3773257, ERS3773258, ERS3773259, ERS066258, ERS040394,

ERS097156, ERS097145, ERS066264, ERS3773261, ERS066260, ERS097140, ERS066263,

ERS082779, ERS097147, ERS3773263, ERS3773260, ERS3773262, ERS104314, ERS097155,

ERS3773264, ERS097139, ERS3773244, ERS040393, ERS407440), PRJEB2724 (ERS100733,

ERS419988, ERS419990, ERS419987, ERS419989, ERS419991), PRJEB8947 (ERS009628,

ERS008275), PRJEB2115 (ERS001888). All metadata of the 151 isolates we analysed in depth includ-

ing another 54 sequenced samples from other studies are summarized in Supplementary file 1 also

detailing the respective ENA accession numbers of individual samples (see also https://microreact.

org/project/_FWlYSTGf; Argimón et al., 2016). Summary statistics and annotations from this study

are available in Supplementary files 1–13. Analysis scripts generated and used in this study along

with the corresponding data files are available on github https://github.com/susefranssen/Global_

genome_diversity_Ldonovani_complex (copy archived at https://github.com/elifesciences-publica-

tions/Global_genome_diversity_Ldonovani_complex).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Franssen SU, Dur-
rant C, Stark O,
Moser B, Downing
T, Imamura H, Du-
jardin J-C, Sanders
M, Mauricio I, Miles
MA, Schnur LF,
Jaffe CL, Nasered-
din A, Schallig H,
Yeo M, Bhattachar-
yya T, Alam MZ,
Berriman M, Wirth
T, Schönian G,
Cotton JA

2019 Global genome diversity of the
Leishmania donovani complex

https://www.ebi.ac.uk/
ena/data/view/
PRJEB2600

EBI European
Nucleotide Archive,
PRJEB2600

Franssen SU, Dur-

rant C, Stark O,

2019 Global genome diversity of the
Leishmania donovani complex

https://www.ebi.ac.uk/

ena/data/view/

EBI European

Nucleotide Archive,
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Moser B, Downing
T, Imamura H, Du-
jardin J-C, Sanders
M, Mauricio I, Miles
MA, Schnur LF,
Jaffe CL, Nasered-
din A, Schallig H,
Yeo M, Bhattachar-
yya T, Alam MZ,
Berriman M, Wirth
T, Schönian G,
Cotton JA

PRJEB2724 PRJEB2724

Franssen SU, Dur-
rant C, Stark O,
Moser B, Downing
T, Imamura H, Du-
jardin J-C, Sanders
M, Mauricio I, Miles
MA, Schnur LF,
Jaffe CL, Nasered-
din A, Schallig H,
Yeo M, Bhattachar-
yya T, Alam MZ,
Berriman M, Wirth
T, Schönian G,
Cotton JA

2019 Global genome diversity of the
Leishmania donovani complex

https://www.ebi.ac.uk/
ena/data/view/
PRJEB8947

EBI European
Nucleotide Archive,
PRJEB8947

Franssen SU, Dur-
rant C, Stark O,
Moser B, Downing
T, Imamura H, Du-
jardin J-C, Sanders
M, Mauricio I, Miles
MA, Schnur LF,
Jaffe CL, Nasered-
din A, Schallig H,
Yeo M, Bhattachar-
yya T, Alam MZ,
Berriman M, Wirth
T, Schönian G,
Cotton JA

2019 Global genome diversity of the
Leishmania donovani complex

https://www.ebi.ac.uk/
ena/data/view/
ERS001888

EBI European
Nucleotide Archive,
ERS001888

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Imamura H,
Downing T, Van-
denBroeck F, San-
ders MJ, Rijal S,
Sundar S, Mannaert
A, Vanaerschot M,
Berg M, DeMuylder
G, Dumetz F, Cuy-
pers B, Maes I,
Domagalska M,
Decuypere S, Rai K,
Uranw S, Bhattarai
NR, Khanal B, Pra-
japati VK, Sharma S,
Stark O, Schönian
G, De Koning HP,
Settimo L, Vanhol-
lebeke B, Roy S,
Ostyn B, Boelaert
M, Maes L, Berri-
man M, Dujardin
J-C, Cotton JA

2016 Evolutionary genomics of epidemic
visceral leishmaniasis in the Indian
subcontinent

https://www.ebi.ac.uk/
ena/data/view/
ERP000140

EBI European
Nucleotide Archive,
ERP000140

Rogers MB, Down-
ing T, Smith BA,
Imamura H, San-
ders M, Svobodova

2014 Genomic Confirmation of
Hybridisation and Recent
Inbreeding in a Vector-Isolated
Leishmania Population

https://www.ebi.ac.uk/
ena/data/view/
PRJEB2473

EBI European
Nucleotide Archive,
PRJEB2473
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M, Volf P, Berriman
M, Cotton JA,
Smith DF

Zackay A, Cotton
JA, Sanders M,
Hailu A, Nasered-
din A, Warburg A,
Jaffe CL

2018 Genome wide comparison of
Ethiopian Leishmania donovani
strains reveals differences
potentially related to parasite
survival

https://www.ebi.ac.uk/
ena/data/view/
PRJEB14372

EBI European
Nucleotide Archive,
PRJEB14372

Zhang WW, Rama-
samy G, McCall L-I,
Haydock A, Rana-
singhe S, Abeygu-
nasekara P,
Sirimanna G, Wick-
remasinghe R, My-
ler P, Matlashewski
G

2014 Genetic analysis of Leishmania
donovani tropism using a naturally
attenuated cutaneous strain

https://www.ncbi.nlm.
nih.gov/bioproject/
210295

NCBI BioProject,
SRS484824

Peacock CS, See-
ger K, Harris D,
Murphy L, Ruiz JC,
Quail MA, Peters N,
Adlem E, Tivey A,
Aslett M, Kerhor-
nou A, Ivens A,
Fraser A, Rajan-
dream M-A, Carver
T, Norbertczak H,
Chillingworth T,
Hance Z, Jagels K,
Moule S, Ormond
D, Rutter S,
Squares R, White-
head S, Rabbino-
witsch E,
Arrowsmith C,
White B, Thurston
S, Bringaud F, Bal-
dauf SL, Faulcon-
bridge A, Jeffares
D, Depledge DP,
Oyola SO, Hilley
JD, Brito LO, Tosi
LRO, Barrell B,
Cruz AK, Mottram
JC, Smith DF, Ber-
riman M

2007 Comparative genomic analysis of
three Leishmania species that
cause diverse human disease

https://www.ebi.ac.uk/
ena/data/view/
ERS001832

EBI European
Nucleotide Archive,
ERS001832

Rogers MB, Hilley
JD, Dickens NJ,
Wilkes J, Bates PA,
Depledge DP, Har-
ris D, Her Y, Herzyk
P, Imamura H, Otto
TD, Sanders M,
Seeger K, Dujardin
J-C, Berriman M,
Smith DF, Hertz-
Fowler C, Mottram
JC

2011 Chromosome and gene copy
number variation allow major
structural change between species
and strains of Leishmania

https://www.ebi.ac.uk/
ena/data/view/
PRJEB2115

EBI European
Nucleotide Archive,
PRJEB2115

Iantorno SA, Dur-
rant C, Khan A,
Sanders MJ, Bever-
ley SM, Warren
WC, Berriman M,
Sacks DL, Cotton
JA, Grigg ME

2017 Gene Expression in Leishmania Is
Regulated Predominantly by Gene
Dosage

https://www.ebi.ac.uk/
ena/data/view/
ERS218438

EBI European
Nucleotide Archive,
ERS218438

Carnielli JBT,
Crouch K, Forrester
S, Silva VC, Car-
valho SFG, Damas-
ceno JD, Brown E,
Dickens NJ, Costa

2018 A Leishmania infantum genetic
marker associated with miltefosine
treatment failure for visceral
leishmaniasis

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJNA494801

NCBI BioProject,
PRJNA494801
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DC, Mottram JC
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Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. 2016. A historical overview of the
classification, evolution, and dispersion of Leishmania parasites and sandflies. PLOS Neglected Tropical
Diseases 10:e0004349. DOI: https://doi.org/10.1371/journal.pntd.0004349, PMID: 26937644

Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM, Sacks DL.
2009. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector.
Science 324:265–268. DOI: https://doi.org/10.1126/science.1169464, PMID: 19359589

Alam MZ, Haralambous C, Kuhls K, Gouzelou E, Sgouras D, Soteriadou K, Schnur L, Pratlong F, Schönian G.
2009. The paraphyletic composition of Leishmania donovani zymodeme MON-37 revealed by multilocus
microsatellite typing. Microbes and Infection 11:707–715. DOI: https://doi.org/10.1016/j.micinf.2009.04.009,
PMID: 19376262

Alam MZ, Nakao R, Sakurai T, Kato H, Qu J-Q, Chai J-J, Chang KP, Schönian G, Katakura K. 2014. Genetic
diversity of Leishmania donovani/infantum complex in China through microsatellite analysis. Infection, Genetics
and Evolution 22:112–119. DOI: https://doi.org/10.1016/j.meegid.2014.01.019

Alemayehu B, Alemayehu M. 2017. Leishmaniasis: a review on parasite, vector and reservoir host. Health Science
Journal 11:519. DOI: https://doi.org/10.21767/1791-809X.1000519

Alexa A, Rahnenführer J, Lengauer T. 2006. Improved scoring of functional groups from gene expression data by
decorrelating GO graph structure. Bioinformatics 22:1600–1607. DOI: https://doi.org/10.1093/bioinformatics/
btl140, PMID: 16606683

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals.
Genome Research 19:1655–1664. DOI: https://doi.org/10.1101/gr.094052.109, PMID: 19648217
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