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Abstract

In this study, we retrospectively analysed a total of 605 clinical isolates from six

West or Central African countries (Benin, Cameroon, Central African Republic,

Guinea-Conakry, Niger and Senegal). Besides spoligotyping to assign isolates to

ancient and modern mycobacterial lineages, we conducted phenotypic drug-

susceptibility-testing for each isolate for the four first-line drugs. We showed that

phylogenetically modern Mycobacterium tuberculosis strains are more likely

associated with drug resistance than ancient strains and predict that the currently

ongoing replacement of the endemic ancient by a modern mycobacterial population

in West/Central Africa might result in increased drug resistance in the sub-region.

Introduction

Tuberculosis is one of the most important infectious diseases worldwide. In 2012,

the World Health Organization (WHO) estimated 8.6 million newly infected cases

and 1.3 million deaths globally, with Asia and Africa carrying the major burden of

disease. Moreover, as of 2012, Africa did not reach WHO mortality and
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prevalence targets, and the emergence of drug resistance is a pressing public health

concern [1].

The advent of modern single nucleotide polymorphism (SNP)-based phylogeny

not only lead to a conclusive classification of the Mycobacterium tuberculosis

complex (MTBC) into seven major human lineages, but also demonstrated that

Africa was the geographic origin of all known lineages and the global TB

pandemic [2]. Several authors have shown that phylogenetically distinct

‘‘modern’’ strains (lineages 2, 3 and 4 – also known as East Asian, East-African

Indian and Euro-American lineages) branched off from the existing ‘‘ancient’’

African strains (lineages 1, 5, and 6 – also known as Indo-Oceanic lineage, M.

africanum West Africa 1 and 2) and were globally dispersed paralleling the human

out-of-Africa migration [2, 3]. While active transmission of the two ancient M.

africanum lineages has only been detected in West Africa, modern lineages spread

around the world and were later re-introduced into Africa with arrival of the

colonial powers [2].

West-, and parts of Central Africa, indeed have an intriguing mycobacterial

population structure, as they are the only regions worldwide where all three

ancient lineages 1, 5 and 6 are endemic. However, recent publications from

various countries observed an interesting trend: the replacement of ancient

lineages with modern strains. This phenomenon was first described in Guinea-

Bissau, where M. africanum West African 2 decreased from 51% to 39% between

1989–2008 (19 years), supported by declines in prevalence of M. africanum

lineages observed in Côte d’Ivoire, Ghana and Cameroon, amongst others

[4, 5, 6, 7]. The speed of this replacement is remarkable in evolutionary terms, as

mere decades ago ancient lineages contributed up to half of all TB cases in some

areas [4, 5], where prevalence has now declined to a small proportion of all cases

[5].

We hypothesized that this major bacterial population shift may impact on TB

control in the sub-region. Such an assumption is reasonable as lineages/families

tend to vary in phenotypes, potential to transmit, or ability to cause disease

[8, 9, 10]. As drug resistance is of major public health relevance, we focused on the

question whether ancient strains are less likely associated with drug resistance, as

has been suggested for lineage 1 in India [11]. If so, then the presently ongoing

transition towards modern strains might result in increased drug-resistance in

West and Central Africa.

Materials and Methods

Sample collection

The samples analysed within this retrospective study had drug-susceptibility

testing (DST) done on arrival, prior to storage at the Institute of Tropical

Medicine (ITM) in Antwerp and originated from various study sites and time

periods (see Table 1 and S1 Table for detailed information). While samples from

Benin, Senegal and Guinea-Conakry were collected as part of the Oflotub study,
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samples from Cameroon, Niger and the Central African Republic were collected

for quality assurance by the ITM supra-national Reference Laboratory. Ethics

permissions were obtained from the ITM Institutional Review Board.

Drug-susceptibility testing (DST)

To determine the drug resistance profile of each isolate we applied phenotypic

drug-susceptibility testing (DST) using the proportion method. Isolates were

grown at 37 C̊ on Löwenstein-Jenssen slopes containing either rifampicin (RMP)

1 mg/ml, isoniazid (INH) 0.2 mg/ml, ethambutol (EMB) 2 mg/ml or streptomycin

(SM) 4 mg/ml [12, 13].

Spoligotyping and lineage assignment of isolates

To classify isolates into lineages, boiled culture lysates were prepared and

spoligotyped as described elsewhere [14]. Based on the binary spoligotype codes,

lineage assignment to distinguish modern from ancient strains was performed

using the publicly available online package ‘‘TBLineage’’ [15]. The spoligotype

international identifier (SIT) number was assigned using SITVITweb (http://www.

pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/) [16].

Statistical analysis

As differing sampling protocols resulted in the inclusion of isolates from patients

with differing treatment history (new/retreatment cases) (see Table 1), we

adjusted for that variable in any analysis conducted. To determine the association

between mycobacterial lineage and drug-susceptibility we conducted a logistic

regression and calculated the Mantel-Haenszel Odds Ratio (OR) and 95%

Confidence Intervals, adjusted for treatment history of patients.

Table 1. Geographical origin and treatment history of the included patient samples (n5605).

Country Treatment history

New cases Retreatment cases Total

no. (%) no. (%) no. (%)

Benin 43 (9.7%) 43 (26.5%) 86 (14.2%)

Cameroon 145 (32.7%) 20 (12.3%) 165 (27.3%)

Central African Republic 102 (23%) - 102 (16.9%)

Guinea Conakry 120 (27.1%) - 120 (19.8%)

Niger - 53 (32.7%) 53 (8.8%)

Senegal 33 (7.4%) 46 (28.4%) 79 (13.1%)

Total 443 (100%) 162 (100%) 605 (100%)

doi:10.1371/journal.pone.0110393.t001
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Results and Discussion

Six hundred and five MTBC isolates of new and retreatment cases, from two

Central and four West African countries were included into this study (Table 1).

A detailed description of each isolate, its origin, time of sampling, DST profile and

spoligotype international type (SIT) can be found in S1 Table. Although

treatment history of patients was not a significant confounder in our dataset (data

not shown), we still considered it in our final analysis. Combining obtained

spoligotyping and DST data, and conducting a multivariate analysis adjusted for

treatment history (new/retreatment cases), we found a strong association between

lineage and drug resistance (Table 2). Specifically, strains belonging to modern

lineages were more likely resistant to any of the tested drugs compared to ancient

strains (adjusted Odds Ratio (OR), 95%CI53.20 (1.56–6.54), p50.0008). When

analysing results by individual drugs, we found that this result was mainly driven

by the higher risk of resistance towards INH and SM (adjusted OR 95%CI52.71

(1.27–5.77), p50.0073 for INH and adjusted OR 95%CI52.69 (1.23–5.85),

p50.0095 for SM) (Table 2). The association was not demonstrated for RMP and

EMB, nor for multi-drug-resistant TB (MDR-TB) isolates, which constituted

17.7% of the total sample.

Although previous publications demonstrated an association between lineage

and drug-susceptibility in other parts of the world before [11], it was not known

whether these results can be generalized and extrapolated to West and Central

Africa and its geographically highly restricted ancient mycobacterial population

that mainly consists of M. africanum isolates. Interestingly, our results confirmed

and reproduced these recent findings and demonstrated that the introduced

modern strains have increased potential to develop INH- and SM-resistance,

when compared to the endemic ancient African lineages. Replacement of

‘‘susceptible’’ ancient strains by resistant modern strains will thus likely lead to

higher prevalence of resistant mycobacteria. This is an important finding

especially for public health practitioners in West and Central Africa. Although

,10% of the analyzed isolates in the current study were ancient strains, suggesting

that the lineage replacement has already taken place, there are several West

African countries, such as Gambia, Guinea-Bissau, Ghana, Sierra Leone, Mali and

Nigeria, in which ancient strains remain an important cause of tuberculosis

[4, 7, 9, 10, 17, 18, 19, 20]. In these very settings M. africanum can still be

responsible for up to one third of pulmonary TB, and further replacement by

modern M. tuberculosis, with an increased risk of resistance to at least one drug

(adjusted OR 3.2, Table 2), may seriously complicate TB case management and

control strategies. For instance, the predicted elevated INH resistance prevalence

and the use of INH and RMP in the continuation phase of current shortcourse

treatment for 4 months might ultimately result in increased RMP resistance as

well. Although we have not found any association with MDR-TB yet, probably

due to the limited number of ancient strains and lack of statistical power, INH

resistance was already shown to increase the likelihood of acquiring additional

RMP resistance before [21]. In addition, systematically treating patients with
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treatment failure with SM in absence of DST might not be appropriate if

prevalence of SM resistance is increasing.

Although we successfully confirmed the described association between ancient

strains and drug-susceptibility [11] in our research area in West and Central

Africa, possible limitations of our study include the retrospective approach and

the low proportion of identified ancient lineages. To conclusively demonstrate

causation between mycobacterial lineage and drug-resistance a prospective

longitudinal large-scale multi-centered study needs to be conducted.

The reason for the observed emergence of modern strains is elusive, however it

was found that these lineages progress to disease faster [8]. This was hypothesized

to provide an adaptation to the overcrowding of humans in cities, in which new

susceptible hosts are in abundance and there is no selective advantage to delay

progression until a new generation of hosts becomes available. Due to the

increased urbanization in Africa, modern strains may have a selective advantage

over ancient, ‘‘rural’’ strains. Another explanation could be that modern strains

are more likely to develop drug resistance and the increased roll-out of drug-based

TB control programs in West and Central Africa, with higher levels of drug

pressure, could potentially select for resistant lineages. Similarly, it could be

conceivable that BCG vaccination is more efficiently protecting against ancient

than modern mycobacterial lineages, due to the closer phylogenetic relatedness of

these ancient lineages to the M. bovis BCG vaccine strains [22]. However, no such

correlation was found in previous studies from The Gambia [23] and since the

present dataset was limited to bacterial data and did not include the BCG status of

the patients, we were not able to test this hypothesis in the present study.

Independent of exact mechanisms triggering the replacement of ancient by

modern strains, our findings predict that ongoing mycobacterial population

dynamics might accelerate the emergence of antibiotic-resistance and should be

considered by public health professionals when planning and evaluating drug

resistance control programs in West and Central Africa.

Table 2. Association between modern (lineages 2, 3, 4) and ancient (lineage 1, 5, 6) mycobacterial lineages and drug-susceptibility testing (DST), overall
resistance and stratified by individual drugs.

Total no. (%) Modern no. (%) Ancient no. (%)
Adjusted Odds Ratio
OR (95% CI)* p-value

DST profile

Any resistance 226 (62.6%) 214 (39.5%) 12 (19%) 3.20 (1.56–6.54) 0.0008

Resistance to individual drugs

Isoniazid 178 (29.4%) 168 (31.0%) 10 (15.9%) 2.71 (1.27–5.77) 0.0073

Ethambutol 85 (14.0%) 79 (14.6%) 6 (9.5%) 1.80 (0.68–4.74) 0.2286

Rifampicin 112 (18.5%) 104 (19.2%) 8 (12.7%) 1.78 (0.79–4.01) 0.1574

Streptomycin 177 (29.3%) 167 (30.1%) 10 (15.9%) 2.69 (1.23–5.85) 0.0095

MDR 107 (17.7%) 99 (18.3%) 8 (12.7%) 1.66 (0.74–3.74) 0.2130

Total 605 (100%) 542 (100%) 63 (100%) - -

*Mantel-Haenszel OR adjusted for treatment history of patients (new/retreatment case).

doi:10.1371/journal.pone.0110393.t002
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Supporting Information

Table S1. Genotypic and DST information on all isolates included in the study.

doi:10.1371/journal.pone.0110393.s001 (XLSX)
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