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Abstract

Upon interruption of antiretroviral therapy, HIV-infected patients usually show viral load rebound to pre-treatment levels.
Four patients, hereafter referred to as secondary controllers (SC), were identified who initiated therapy during chronic
infection and, after stopping treatment, could control virus replication at undetectable levels for more than six months. In
the present study we set out to unravel possible viral and immune parameters or mechanisms of this phenomenon by
comparing secondary controllers with elite controllers and non-controllers, including patients under HAART. As candidate
correlates of protection, virus growth kinetics, levels of intracellular viral markers, several aspects of HIV-specific CD4+ and
CD8+ T cell function and HIV neutralizing antibodies were investigated. As expected all intracellular viral markers were lower
in aviremic as compared to viremic subjects, but in addition both elite and secondary controllers had lower levels of viral
unspliced RNA in PBMC as compared to patients on HAART. Ex vivo cultivation of the virus from CD4+ T cells of SC
consistently failed in one patient and showed delayed kinetics in the three others. Formal in vitro replication studies of these
three viruses showed low to absent growth in two cases and a virus with normal fitness in the third case. T cell responses
toward HIV peptides, evaluated in IFN-c ELISPOT, revealed no significant differences in breadth, magnitude or avidity
between SC and all other patient groups. Neither was there a difference in polyfunctionality of CD4+ or CD8+ T cells, as
evaluated with intracellular cytokine staining. However, secondary and elite controllers showed higher proliferative
responses to Gag and Pol peptides. SC also showed the highest level of autologous neutralizing antibodies. These data
suggest that higher T cell proliferative responses and lower replication kinetics might be instrumental in secondary viral
control in the absence of treatment.
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Introduction

Once infected with human immunodeficiency virus (HIV), the

large majority of individuals are unable to control the virus.

Exceptional patients, so-called elite controllers (EC), continue to

have an ‘‘undetectable’’ plasma viral load (VL,50 copies/ml)

without treatment [1]. Strong HIV-specific adaptive immunity,

genetic factors and/or viral defects have been invoked to explain

controller status. Elite controllers appear to harbor HIV-1 variants

that encode Gag, Pol, Env and or Nef proteins that are less

efficient than their counterparts of HIV-1 in typical/chronic

progressors. Broad neutralizing antibodies or highly effective T

cells with broad specificity are present in a number of EC [2–4].

Particular HLA B MHC antigens, including B27, B5701 and B58,

are enriched in EC. This has been explained by the fact that

CD8+ T cells restricted by these HLA molecules, recognize very

conserved epitopes in Gag and that escape comes at a high fitness

cost for the virus [5,6].

Despite all described associations, it remains controversial

which functional characteristics of T cell responses are important

for control of viral replication and protection against disease

progression. The following features have been suggested: strong

proliferative T cell responses, preferential targeting of particular

viral proteins (e.g. Gag better than Env) [7]; number of epitopes

targeted or breadth [8,9]; functional affinity of the T cell receptor

or avidity; concomitant CD4+ and CD8+ T cell responses as well

as ‘‘polyfunctionality’’ i.e. the simultaneous production of various

cytokines such as IL-2 and TNF-a, besides IFN-c, chemokines

such as. MIP1-a and/or lytic factors such as perforin, granzymes

and CD107a expression [10–13].

Most HIV-infected subjects ultimately become dependent on

highly active antiretroviral therapy (HAART) for their survival.

HAART has improved life expectancy and quality of life of all

HIV-infected patients with progressive disease [14]. However, so

far it is not possible to cure HIV infection mainly because latent
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reservoirs persist even in patients who are on effective combination

treatment [15]. Cessation of HAART therefore results in viral

rebound within days or weeks and pre-treatment VL levels are

typically reached within one year after treatment interruption

[16,17].

In contrast to this general rule, we recently identified four

exceptional subjects, who were first treated for progressive disease

and then stopped HAART, but nevertheless kept their plasma

virus undetectable for a long time. We have called these patients

‘‘secondary controllers’’ (SC). Similar phenomena have been

described by others [18,19], but the underlying mechanism

responsible for this viral control remained unclear. Understanding

the immune-viral interaction that could explain a SC status is

important for the further development of immunotherapy, since

the ultimate purpose of this type of intervention is to induce a ‘‘SC

status’’ in all HAART patients.

To address this question, we compared five groups of HIV

infected individuals, including SC, rebounders or ‘‘secondary non

controllers’’ (SNC), patients under stable HAART, therapy-naı̈ve

progressors (TN), as well as EC. As possible ‘‘correlates of

secondary protection’’ we quantified levels of intracellular viral

markers, tried to cultivate the virus from the patients CD4+ T cells

ex vivo and to formally study the replication kinetics of those viruses

in vitro. In addition, we investigated several aspects of HIV-specific

CD4+ and CD8+ T cell functions. The latter included ex vivo

breadth, amplitude, avidity and polyfunctionality as well as

proliferative responses upon triggering with HIV peptides.

Materials and Methods

Patients
Blood samples were obtained from HIV-1 infected individuals

enrolled at the Institute of Tropical Medicine (ITM), Antwerp,

Belgium. The study protocol was approved by the Institutional

Review Board of ITM and by the Ethical Committee of the

Antwerp University Hospital. All subjects gave written informed

consent. Five groups of HIV-1 infected individuals were selected.

(1) Secondary controllers kept their viral load (VL) below 1,000

copies/ml after cessation of HAART and showed a VL of ,50

copies at month 6. (2) Secondary non controllers (SNC) had a VL

.10,000 copies/ml 3 months after cessation of HAART. (3)

HAART patients were on stable antiretroviral treatment with VL

,50 copies/ml. (4) Non-controller therapy naive (TN) patients

had a VL .10,000 copies/ml. (5) Elite controllers (EC) had a VL

,50 copies/ml without any treatment for more than 3 years. All

patients in the study were chronically infected with HIV-1 i.e. for

at least 3 years.

Peripheral blood mononuclear cells (PBMC) and plasma
Each patient enrolled in the study donated 3 times 100 ml blood

with an interval of 3 months. Plasma samples obtained from these

patients were frozen at 280uC in aliquots. PBMC were isolated on

a LymphoprepH density gradient (Lucron Bioproducts, Gennep,

The Netherlands). From freshly prepared PBMC, CD4+ T cells

were purified using positive magnetic selection (Miltenyi, Glad-

bach, Germany) and these were used to cultivate virus. At each

time point 10 million PBMC were freeze-dried for extraction of

DNA or RNA to perform HLA typing and measurement of

intracellular viral markers. The rest of the PBMC were frozen as

described elsewhere [20] and, after thawing, they were used to

perform the immunological experiments.

HLA typing and determination of CCR5D32
Intermediate to high resolution HLA class I-typing for the B

locus was performed by the Red Cross Blood Transfusion Center

at the Free University of Brussels in Jette, Belgium. The presence

of CCR5D32 was determined for all SC, EC and SNC as

described elsewhere [21].

Amplification of gag, pol and env genes and HIV-1
subtyping

DNA was extracted from PBMC samples using commercial kits

(Qiagen, Venlo, The Netherlands). Afterwards gag, pol and env were

amplified as described elsewhere [22]. The sequences were

assembled and edited using BioEdit. Subtype was determined by

phylogenetic analysis. To determine whether HAART had

induced important mutations that induced resistance, sequences

were analyzed using HIV drug resistance database of Stanford

University. Next, it was also analyzed whether important

mutations were present in T cell epitopes therefore Los Alamos

database was used.

Quantitation of HIV-1 proviral DNA, unspliced and
multiple spliced RNA

For quantitation of cellular HIV-1 RNA and DNA load, total

cellular nucleic acids were extracted from ten million dried-frozen

PBMC using the Boom procedure [23]. Levels of HIV-1 proviral

(pr) DNA and both forms of cellular HIV-1 RNA, unspliced (us)

RNA and multiple spliced (ms) RNA, were quantified by semi-

nested real-time PCR, as described earlier [24]. The extracted

DNA was directly subjected to two rounds of PCR amplification: a

limited-cycle pre-amplification step and a real-time PCR step,

using semi-nested primers. For RNA quantitation, the eluted RNA

samples were first subjected to DNase treatment (DNA-free kit;

Ambion Inc., Austin, Texas, USA), to remove HIV-1 prDNA, and

subsequently to reverse transcription. For both usRNA and

msRNA assays, two rounds of amplification with semi-nested

primers were performed on the resultant cDNA. For all assays, no

positive signals have been obtained from the no-template PCR

controls, as well as from the PCR controls without the reverse

transcription step (for RNA assays), which were included in the

quantitation. The amounts of PBMC-derived HIV-1 DNA and

RNA species were normalized to total cellular inputs, in a separate

real-time PCR by using the detection kits for either b-actin or

ribosomal RNA, respectively (both Applied Biosystems Inc., Foster

City, California, USA) and expressed either as number of copies

per 106 PBMC for prDNA or as number of copies per mg total

RNA for usRNA and msRNA. The sensitivity of all three assays

was four copies per reaction, which translated into approximately

40 copies/106 PBMC for the prDNA assay and 200 copies/mg

total RNA for RNA assays (actual detection limits depend on the

total cellular inputs of the PBMC samples). The linear range was

at least five orders of magnitude. The sensitivity, reproducibility,

and accuracy of these assays have been documented earlier [25].

Ex vivo cultivation of virus and evaluation of in vitro
replication capacity of the isolates

Purified CD4+ T-cells from all patients were cultivated with

phytohemagglutinin (PHA 10 mg/ml) and interleukin (IL)-2

(10 U/ml, Gentauer) stimulated PBMC to produce autologous

virus. In some cases (SC and EC) purified CD4+ T-cells were

electroporated with siRNA against RcKp54 (square wave puls

500 V, 5 ms) and cultivated with CD8 depleted PHA and IL-2

stimulated PBMC. The relative replication capacity (fitness) of the

in vitro cultivated viruses from three secondary controllers and four

Secondary HIV Control: Immune and Viral Correlates
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secondary non controllers was evaluated. To this end, PHA and

IL-2 stimulated PBMC from 3 healthy donors were infected at

multiplicity of infection (MOI) 1023 with the viruses from the

patients and BaL as a reference strain (NIH, Germantown, MD).

Viral production was assessed by measuring HIV p24 concentra-

tions by ELISA [26] over time in the supernatant.

Assessment of HIV-specific T cell responses, screening
ELISPOT

Interferon (IFN)-c enzyme-linked immunospot (ELISPOT)

assays (Diaclone, Besançon, France) were performed with thawed

PBMC as described elsewhere [9]. In these assays 769 HIV-1

peptides, 15 amino acids long and overlapping by 11 amino acids

obtained from NIH AIDS Research and Reference Reagent

Program (Germantown, Maryland, USA) spanning the entire HIV

proteome, were used. The number of spot-forming cells (SFC) per

well was determined using an automated ELISPOT plate reader

(AID, Strassburg, Germany). Responses were scored as positive if

the number of SFC exceeded 50 per 106 PBMCs and was at least 3

times higher than the mean SFC in the 3 negative control wells

(containing PBMC but no peptides).

Epitope Mapping
Mapping of T cell responses was performed by IFN-c ELI-

SPOT using a strategy based on a matrix of peptide pools as

previously described [9,27]. The 372 peptides spanning HIV-1

Gag and Pol were divided into 370 pools of 10–11 peptides each.

Each peptide was included into two different pools. The final

concentration of each peptide was 2 mg/ml.

Avidity
T cell avidity refers to activation threshold in response to

defined concentrations of exogenous peptide. It was measured by

pulsing PBMC in IFN-c ELISPOT assay with fivefold serial

peptide pool dilutions. Only those peptide pools were used that

were previously positive in the screening assay. T cells were

determined as high avidity when the two lowest concentrations

(3.2 and 0.64 ng/ml) were positive in ELISPOT assay.

Polyfunctionality of T cells
Thawed PBMC (1*106 per experimental condition) were

washed and stimulated in the presence of Brefeldin A (Becton

Dickinson, Erembodegem, Belgium) with medium, the standard-

ized mixture of Cytomegalovirus-, Epstein Bar Virus and

Influenza (Flu) peptides (CEF, also donated by the NIH Reagent

Program) as well as HIV Gag or Pol peptide pools always at a final

concentration of 2 mg/ml. Only peptide pools positive in the

screening IFN-c ELISPOT assay were used. After stimulation for

6 hours, cells were stained for membrane markers using the

following conjugated monoclonal antibodies: anti-CD3-PerCP-

Cy5.5, anti-CD4-Alexa 700, anti-CD8-Pacific blue, and anti-

CD69-APC-Cy7 (BD Biosciences). Next, cells were fixed and

permeabilized (BD lyse/Fix and BD Perm 2 solutions, BD

Biosciences) and intracellular cytokines were stained with the

following directly conjugated antibodies: anti-CD107a-phycoery-

thrin (PE)-Cy5, anti-IFN-c-FITC, anti-TNF-a-PE-Cy7, and anti-

IL-2-PE. Polychromatic flowcytometric analysis was done using a

Cyflow ML flow cytometer (Partec, Munster, Germany). Between

200,000 and 500,000 events were collected per sample. The events

were subjected to a lymphocyte gate by FSC versus SSC plot.

Following identification of CD8+ T cells (CD3+ CD8+) and CD4+
T cells (CD3+ CD82), a gate was made for each respective

function within the CD3+CD8+ T-cells and within the

CD3+CD82 T-cells, by representing SSC in the X-axis versus

cytokine function in the Y-axis. After the gate for each function

were created, we used the Boolean gate platform to create the full

array of possible combinations, equating 16 response patterns

when testing 4 functions (FlowJo, Treestar). For more detailed

explanation on this methodology see: http://www.flowjo.com/

v765/en/boolean.html and http://www.flowjo.com/v8/html/

boolean.html

T cell proliferation
Lymphoproliferative responses were determined using the (3H)

Thymidine incorporation assay, as previously described [28].

Briefly, thawed PBMC from the different time points were

incubated in six plicate at 26105 cells/well in 96 flat bottom well

plates (Nunclon, Bornem, Belgium) in 0,2 ml complete medium

supplemented with 2,5% heat-inactivated pooled human serum

(PHS, PAA, Pasching, Austria). Cells were cultured at 37uC in a

humidified 5% CO2 incubator in absence or in presence of each

peptide pool separately. Only peptide pools that were positive in

IFN-c ELISPOT screening were tested in the proliferation assay.

Cell cultures were pulsed for 8 hours on day 6 with 1 mCi/well

(3H) Thymidine (Perkin Elmer, Massachusetts, USA). Cells were

harvested onto glass filters and 3H incorporation was measured

using a TopCount scintillation counter (Perkin-Elmer). T cell

proliferation was reported as stimulation index (SI), determined by

dividing the mean counts per minute for the peptide-stimulated

wells by the mean for non stimulated control wells.

Env gp160 cloning and pseudovirus construction
To determine the neutralization susceptibility of viral variants

from subjects enrolled in the study, single cycle pseudoviruses were

generated. Full-length env gp160 was amplified from purified

PBMC from the patients via nested PCR and cloned into an

expression vector either pSV7d or pcDNA4/TO (Invitrogen BV,

Groningen, The Netherlands). To investigate the neutralization

capacity against heterologous variants following pseudoviruses

were obtained from the NeutNet program: SF162 (subtype B),

DU174 (subtype C), 92BR025 (subtype C) and 92UG024 (subtype

D) [29]. Pseudoviruses were generated in a 24-well plate by

transfection of human embryonic kidney (HEK) 293T cells

(obtained from ATCC) with pNL4-3.LucR–E– (NIH AIDS

Research and Reference reagent program) and one of the Env

expressing plasmids, just mentioned [30]. After 48 hours super-

natant was harvested and stored at 280uC. The titers of the

pseudoviruses were determined on TZM-bl cells, expressing

Luciferase under the control of an LTR promoter. Infection of

TZMbl cells was quantified using SteadyLite (Perkin Elmer) as a

substrate for Luciferase. Emitted relative light units (RLUs) were

quantified on a LB 941 Berthold luminometer (Alabama, US)

[31].

Purification of IgG
Because also patients on HAART are included in the study,

neutralization assays can only be performed with immunoglobulin

(Ig)G isolated from plasma to avoid interference by drugs. To this

end a commercial kit (SpinTrap, GE healthcare, The Netherlands)

was used and manufacturer’s instructions were followed.

Neutralizing antibody assay
Neutralizing capacity of each patients IgG against autologous

and heterologous viruses was measured by a reduction in luciferase

gene expression after a single round of infection of TZMbl cells

with pseudotyped viruses. The 50% inhibitory dose (ID50) was

Secondary HIV Control: Immune and Viral Correlates
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calculated as the reciprocal IgG dilution resulting in a 50%

reduction of RLU compared to the virus control. [32].

Statistical analysis
For cellular HIV-1 load, statistical analyses were performed on

log10-transformed values. Undetectable values of cellular HIV-1

DNA and RNA were left-censored at the detection limit of

corresponding assays. Statistical analysis and graphical presenta-

tions were performed using Prism (version 3.0, GraphPad). For

comparison of multiple groups, significance levels were determined

by Kruskal-Wallis tests; when two groups were compared, Mann-

Whitney tests were used. All statistical tests were two-sided. P

values ,0.05 were considered statistically significant.

Results

Clinical characteristics of the study population
Within the HIV cohort of the Institute of Tropical Medicine of

Antwerp, including over 1700 patients, we identified 160 subjects,

excluding pregnant women, who had been successfully treated for

progressive HIV infection with full HAART, but at some point

decided to stop treatment against medical advice. Four patients,

further referred to as secondary controllers (SC), either showed a

limited and short-lived rebound (P1 and P3) or no viral rebound at

all (P2 and P4) and all 4 kept their VL at ‘‘undetectable’’ level

(,50 copies) during at least 6 months after effective therapy

interruption. Importantly, antiretroviral drug levels were unde-

tectable in those SC. Some clinical observations of the first two (P1

and P2) have been described in a separate case report [33]. In the

present extensive study we aimed to identify genetic, viral and

immune factors, associated with the SC status.

To that end, we compared SC with ‘‘secondary non-control-

lers’’ (SNC), who show a strong and sustained viral rebound after

stopping HAART. However, the low-to-absent viral replication in

the SC could itself influence immune function. Therefore two

other groups with low VL were included: elite controllers (EC),

controlling virus replication below 50 copies without HAART,

and patients under successful HAART. In addition, we also

considered a group of regular chronically infected therapy-naı̈ve

(TN) patients with high VL. In each of the four comparator

groups, patients were included over a range of peripheral blood

CD4+ T counts, as can be seen in Table 1. Most patients were

infected with HIV-1 subtype B or the closely related subtype D,

with the exception of SC P4 (A1) and HAART P17 (CRF-02). The

EC and TN patients were all male, whereas the other groups

included one or two women. The TN patients were on average

younger (35 years), as compared to the other groups (54.5 in EC;

p,0.05 and 57 in HAART; p,0.005). The time since diagnosis

was also lowest in the TN group (mean 5.25 years), whereas it was

9.5 years in EC, 11.5 years in SC, 12.25 years in HAART

(p,0.05) and 14.25 years in SNC (p,0.01) respectively. The

duration on HAART was similar in the relevant groups, whereas

the range of VL extended to higher levels in the SNC as compared

to the TN.

Selected host genetic factors do not differ amongst
patient groups

First, we investigated whether some host genetic factors could be

associated with the secondary controller status. HLA-B5701,

known as over-represented in EC [5], was present in one EC, in

one SC and one TN. In fact, none of the HLA-B alleles, associated

with disease (non) progression presented a skewed distribution. We

also evaluated the frequency of CCR5 polymorphisms in both

controller groups and the SNC, because D32 heterozygosity has

been associated with slower disease progression [34]. Heterozy-

gosity was present in two EC and one SNC; all other patients were

homozygous for wild-type CCR5 (Table 1). The sequences of Gag,

Pol and Env of the SC were analyzed using the Stanford database.

No obvious defects in any of these genes and no CD8+ T cell

associated escape mutations could be detected.

Levels of intracellular viral markers discriminate the
patient groups

In order to understand the molecular details of intracellular

HIV-1 dynamics, levels of proviral (pr)DNA, unspliced (us)RNA

and multiplespliced (ms)RNA, were quantified on PBMC extracts

(Fig. 1). Due to the primers used this analysis was restricted to

subtype B and D infected patients. Expression of usRNA and

msRNA can be linked to productive infection, whereas the prDNA

amounts reflect the size of the pool of latently infected cells

[24,25]. In TN and SNC, high levels of usRNA and proviral load

were present and the amount of usRNA correlated with the

proviral load, as expected. In the HAART-treated patients, all

being on suppressive therapy for over 9 years, the level of msRNA

remained under the detection limit, whereas usRNA and prDNA

levels were clearly lower than in the untreated viremic groups

(SNC and TN), but nonetheless detectable in all patients. From the

two EC tested the levels of usRNA and prDNA were detectable in

one patient (P5). Remarkably, about one year after this

measurement, P5 lost his EC status, as his plasma VL rose from

,50 to 522 copies/ml, while the other EC patient kept his VL

under the detection limit. Finally, in all SC both usRNA and

msRNA were below the detection limit (p,0.005 for comparison

of usRNA levels between SC and HAART-treated patients) and

prDNA was extremely low or undetectable. In conclusion, with

regard to intracellular viral markers, SC clearly differed from the

HAART-treated patients (usRNA), despite plasma VL being

undetectable in both these groups.

Ex vivo isolation and in vitro replication of viruses from
secondary controllers

CD4+T cells from all patients were purified and used as such

(first attempt) or after transfection with with siRNA against

RcKp54 (subsequent attempts) to isolate the virus with activated

donor PBMC. Virus could easily be cultivated from TN and SNC

patients (always at the first attempt and within 1 week) and from

HAART patients (first attempt and within 2 weeks). By contrast,

despite two attempts, virus cultures from only 1 EC (P5) turned

positive. Interestingly, this particular EC also had a detectable

level of usRNA and was the one who subsequently lost his EC

status. With regard to the SC, no virus could be cultured from P2,

despite 3 attempts, while the others turned positive with delayed

kinetics as compared to SNC (Fig. 2A): it took one attempt for P1

and P4, whereas only the second culture of P3 became positive

after 53 days.

At first view these data suggest that of the three cultivable SC

viruses, P3 is the least replication competent and P4 the fittest.

However, the ‘‘cultivability’’ also depends on other factors (e.g.

poviral load). Therefore, we formally compared replication

kinetics of SC and SNC after adjusting their infectious titre to

the same MOI and performed three independent ‘‘fitness’’

experiments in PBMC with the reference strain BaL as a positive

control. As can be seen in Fig. 2B, the virus from P1 failed to grow

and that from P3 was rather poorly growing, whereas P4 was

slightly more replication competent than the viruses from SNC.

In summary, in vivo the proviral load of SC was very low, but

sequencing failed to show gross abnormalities in their virus genes.

Secondary HIV Control: Immune and Viral Correlates
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Clearly, we have positive evidence in all SC patients that

replication competent virus was present. For SC: P1, P3 and P4,

the virus could be obtained in primary ex vivo culture patient’s

CD4+ T cells with delayed kinetics, as compared to SNC.

Although the virus from P2 could not be cultivated, she showed a

viral blip later in the evolution. In the secondary in vitro cultures,

the virus from P4 was fully replication competent, whereas the

viruses P1 and P3 showed a very low replication capacity. Taken

together, these virological data apparently cannot fully explain the

SC status and therefore a thorough immunological evaluation was

performed as well.

Breadth and magnitude of HIV-specific T cells responses
is variable amongst patients in each group

In order to assess whether T cell responses to viral proteins

could be associated with the viral status in our different patient

Table 1. Patients characteristics at enrollment

Group Patient
HLA B
type CCR5D32

HIV-1
subtype Sex Origin

Age
(years)

Years since
HIV
diagnosis

Days on
HAART

Virus load
before HAART
(copies/ml)

Virus load
at intake
(copies/ml)

CD4 T
count at
intake
(cells/ml)

SCa P1 B4101–
5201

No B M Belgium 65 20 6290 2530f ,50h 250

SC P2 B1402–
3501

No D F Belgium 55 11 2092 44475 ,50 1316

SC P3 B4002–
5701

No B M Venezuela 36 4 UKg UKg ,50 244

SC P4 B3701–
4402

no A1 F Belgium 37 11 2420 78170 ,50 1486

ECb P5 B3901–
4402

heterozygous B M Belgium 36 7 0 ,50 633

EC P6 B1501–
5701

no B M Belgium 62 13 0 ,50 614

EC P7 B3901–
4001

heterozygous B M Belgium 61 9 0 ,50 437

EC P8 B0801–
B2705

no B M Belgium 59 9 0 ,50 675

SNCc P9 B1302–
4501

no D F Congo 51 17 5259 ,400f 216,000h 726

SNC P10 B0702–
B1401

no B M Belgium 40 14 2964 ,400f 233,000 361

SNC P11 B4001–
4403

heterozygous B M Belgium 47 11 3451 145253 13,800 345

SNC P12 B1501–
3701

no B F Belgium 39 15 4616 30450 50,000 732

TNd P13 B3906–
5701

B M Belgium 38 10 0 4,280 361

TN P14 B0702–
1401

B M Belgium 27 1 0 69,600 582

TN P15 B1801–
3501

B M Brazil 34 1 0 26,000 425

TN P16 B0801–
1801

B M Belgium 41 9 0 101,000 310

HAARTe P17 B4402–
5501

CRF02_AG F Belgium 52 12 4294 170000 ,50 707

HAART P18 B5501–
5701

B M Belgium 51 12 4259 142754 ,50 973

HAART P19 B0702–
3501

B M Belgium 58 16 5987 ,400 f ,50 806

HAART P20 B0801–
4403

B M Belgium 67 9 3409 267000 ,50 438

aSC = secondary controller
bEC = elite controller
cSNC = secondary non-controller
dTN = therapy-naı̈ve patients
eHAART = patients under highly active antiretroviral treatment
fViral load under AZT
gUK: unknown: this patient had already started HAART in another center.
hin SC and SNC treatment was stopped for at least 6 months
doi:10.1371/journal.pone.0037792.t001
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groups, we first performed a comprehensive screening of ex vivo

IFN-c ELISPOT responses, using thawed PBMC, stimulated with

peptide pools representing the whole HIV genome. Clearly, HIV-

specific IFN-c producing T cells were detected in all subjects.

Comparing mean number of peptide pools recognized or breadth

(Fig. 3A) and the magnitude of the responses within each viral

protein or amplitude (Fig. 3B) did not reveal clear-cut differences

between the patients groups, Remarkably, the mean amplitude of

Gag responses was highest in SC, but individual variation was

wide. With regard to breadth, the two SC P2 and P4, with high

peripheral CD4+ T cells and no immediate viral blip after

treatment cessation, had a very narrow response against Gag and

Pol, reacting against 3 and 6 different peptides respectively while

the ones with the low CD4+ T cell count and a small initial viral

rebound (P1 and P3) had a very broad responses, reacting against

more than 50 different peptides in Gag and Pol (Table 2).

However, in the other groups there were also some patients with a

narrow response and others with a broad response but this could

not be correlated with CD4+ T cell count or viral load. Overall,

these data show that there is heterogeneity in breadth and

magnitude of these responses among HIV controllers as well as

non-controllers.

Figure 1. Levels of intracellular HIV-1 molecular markers in
PBMC. Levels of proviral DNA (prDNA), unspliced RNA (usRNA), and
multiply spliced RNA (msRNA) are shown. Patient groups with
detectable plasma viremia (TN and SNC) are shown in red, and those
with undetectable plasma viremia (HAART-treated, EC, and SC) are
shown in blue. Horizontal bars represent median values. Undetectable
values, left-censored at the corresponding detection limits (which were
different for every sample, as they depended on total cellular inputs in
the real-time PCR reactions), are depicted by open circles. Individual
prDNA and usRNA values are means of two independent measure-
ments. The statistical significance of the comparison between usRNA
levels of SC and HAART-treated patients was calculated by use of
unpaired T-test.
doi:10.1371/journal.pone.0037792.g001

Figure 2. Replication characteristics of virus from secundary
controllers. Ten million purified CD4+ T-cells from 4SC and 4SNC are
cultivated with PHA and IL-2 stimulated PBMC. Panel A shows the virus
replication in the primary culture (y-axis shows OD of p24 ELISA). These
viruses were used in a secondary culture to evaluate fitness, by infecting
new PHA and IL-2 stimulated PBMC at an equal MOI, with Ba-L virus as a
reference. In panel B, the mean (and SEM) virus production in three
donor PBMC is expressed as p24 in the supernatant. Green symbols are
the SC; blue symbols are SNC and red symbol is BAL virus.
doi:10.1371/journal.pone.0037792.g002
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T cell avidity for Gag and Pol peptides is not different
between patient groups

It was previously reported that CD8+ T cells that are associated

with control of HIV replication, display high avidity, as evidenced

by maintenance of T cell responses at very low (pg/ml) peptide

concentrations [10]. Based on the results of the screening

ELISPOT, using peptide pools in matrices, we deduced the

epitopes in Gag and Pol, recognized by each patient separately.

The selected peptides that were confirmed to be positive upon re-

testing in a follow-up PBMC sample were used in a concentration

range to evaluate avidity (Table S1). Only a few patients showed

really high avidity responses in that ELISPOT remained positive

at the lowest concentrations used. However, these patients are

scattered over the SC (P2), EC (P8), SNC (P9 and P12) as well as

the HAART group (P17 and P19). SC have no higher levels of

strong avidity T cells as compared to the other groups and

remarkably, also 2 out of 3 EC tested seemingly have no high

avidity responses at all, suggesting that the presence of high avidity

T cell responses to Gag and Pol is not associated with viral control

in our SC and also not in our EC.

Polyfunctionality of CD4+ and CD8+ T cells fails to
discriminate viral controllers from non-controllers

Polyfunctionality, i.e. the capacity of CD4+ and/or CD8+ T

cells to exhibit multiple effector functions simultaneously upon

antigen encounter, is currently considered as one of the best

correlate of T cell efficacy measurable directly ex vivo [35]. To

evaluate this function, PBMC from each patient were stimulated

with each peptide pool that showed positive SFC in the screening

ELISPOT. The percentage of CD4+ and CD8+ T cells group that

expressed individual and combined effector molecules, including

CD107a, TNF-a, IL-2 and IFN-c was measured. The gating

strategy is illustrated in Fig. 4A. No differences in expression of

individual cytokines/effector molecules were found between the

patient groups (data not shown). Remarkably, percentages (Fig. 4B,

C) and absolute numbers (Fig. 4D, E) of either CD4+ and CD8+ T

cells expressing one, two, three or four functions, did not differ

between the patient groups. Clearly, in our hands, polyfunction-

ality failed to distinguish controllers from non-controllers.

SC and EC show more T cell proliferation towards Gag
and Pol

Next, the proliferative capacity of T cells towards Gag and Pol

peptide pools was evaluated. Mean proliferative responses in the

various groups are shown in Fig. 5. Interestingly, SC had

significantly more proliferative responses to Pol peptides than

TN (p,0.01), SNC (p,0.0001) and HAART (p,0.01). Also T

cells from both SC and EC had higher proliferative capacity tot

Gag peptides than T cells from TN (p,0.05). As might be

expected, the SC with the broadest and highest ELISPOT

responses, also displayed the highest proliferative capacity

(Table 2). Taken together, these results suggest that the capacity

of T cells to proliferate is associated with control of virus

replication.

Neutralizing antibodies
We next quantified heterologous and autologous neutralizing

antibodies in the different patients. To avoid the effect of anti-

retroviral drugs (in HAART patients) and possible other plasma

factors, IgG from the plasma of all patients was purified. IgG-

mediated neutralizing capacity against 5 reference strains was low

to absent in all patients and therefore no broad cross neutralizing

antibodies were observed (data not shown). Autologous neutral-

ization could be tested in two SC (Fig. 6A), two SNC (Fig. 6B),

three TN (Fig. 6C) and two HAART patients (Fig. 6D). In elite

controllers we were unable to amplify full gp160. When we accept

the 50% level as significant at any IgG concentration, both SC

patients P1 and P4 showed important autologous neutralization

against at least one contemporaneous Env clone. However TN

patient 13 and 14 and HAART patient 20 were also able to

neutralize contemporaneous Env. The two SNC tested showed

very low if any neutralization capacity. With regard to SC patient

1, sequence analysis of the obtained pseudoviruses clearly

demonstrated the existence of at least 2 closely related viruses

(data not shown). As shown in Fig. 6A, at the highest concentration

Figure 3. Breadth and magnitude of T cell responses against
HIV peptides. (A) To evaluate T cell response breadth, PBMC from
different patient groups were stimulated with peptide pools spanning
the whole HIV genome. In the Y-axis the number of pools tested for
each gene or gene group is indicated. In the X-axis the mean number
(+SD) of peptide pools inducing positive ELISPOT responses in the
HAART, TN, SNC, EC and SC patient groups is represented. (B) Based on
the same dataset, the magnitude of the response was calculated as the
mean number of IFN-c spot forming cells (SFC) per million PBMC for
each group of patients. Only peptide pools against which a positive
response was measured, were included in this calculation. For each
patient the SFC of positive peptide pools within each protein were
cumulated and the mean (+SD) within each patient group is
represented. No statistical differences were found.
doi:10.1371/journal.pone.0037792.g003
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used (250 mg/ml) the IgG neutralized one of the clones very

potently (.90%), while the other pseudovirus was not neutralized

(,50%). Interestingly also a recombinant virus having parts of

both viruses could be amplified. Partial neutralization (65%) of this

recombinant virus was obtained. Clearly, these data are limited,

but they suggest that neutralizing antibodies might have a role in

the SC status of this patient.

Clinical follow-up
Samples for this study were taken in 2008. During the following

3 years, P1 and P3 kept an undetectable VL and their already low

CD4 T counts tended to decrease further. Remarkably, P2 showed

1 viral blip of about 1000 copies and P4 showed multiple blips

between 100 and 1000 copies/ml, but both kept their CD4 T

count over 1000 cells/mL. Only P3 was put on HAART again,

because of infectious complications.

Discussion

In this study we describe a special group of patients, which we

labeled ‘‘secondary controllers’’. These HIV-1 infected individuals

first showed clear-cut disease progression, were successfully treated

for several years, stopped treatment and, unexpectedly, controlled

their virus for many months or even years. This type of post-

treatment interruption or ‘‘secondary’’ viral control might provide

new clues to correlates or mechanisms of protection, which could

be particularly useful to monitor immunotherapeutic strategies.

We performed a comprehensive analysis of various host-viral

interaction parameters. Remarkable, in common with equally

aviremic but untreated elite controllers, the secondary controllers

displayed very low level of HIV-1 usRNA and their virus was

difficult to cultivate and had a lower fitness (except for SC P4).

Relatively high T cell proliferation towards Gag and Pol peptides

were also observed. In this respect, both controller groups behaved

clearly different from viremic therapy-naı̈ve progressors or

Table 2. Summary of secondary controllers characteristics

P1 P2 P3 P4

Clinical characteristics

CD4 T count Low High Low High

Initial viral rebound Yes No Yes No

Late viral blips No One No Multiple

Viral parameters

Intracellular prDNA 8 87 bdla NDb

Us/ms RNA bdl bdl bdl ND

Primary culture positive at day 13 Remained negative 53 10

Secondary fitness No growth Not possible low high

T cell responses to HIV peptides

Breath (nu of pools recognized) Broad Narrow Broad Narrow

Magnitude (S SFC/106 PBMC)

- Tat rev nef 278 99 57.53 19

- Pol 278 18 369 77

- Vif vpr vpu 27 15 342 5

- Gag 918 65 2413 147

- Env 460 15 78 151

Polyfunctionality to Gag/Pol: (%)

u within CD3+CD82 T cells

Single 85.71 69.14 93.11 82.45

Double 12.47 29.28 6.72 16.45

Triple 1.79 1.58 0.17 1.04

Four 0.03 0 0 0.06

u within CD3+CD8+ T cells

Single 64.70 52.35 56.39 55.05

Double 29.18 45.42 40.99 39.51

Triple 5.71 1.77 2.31 5.06

Four 0.40 0.46 0.3 0.37

Proliferation (SI)

- Pol 5.5 1.1 3.3 1.2

- Gag 5.7 1.2 5.8 2.5

a: below detection limit
b: Not Done
doi:10.1371/journal.pone.0037792.t002
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Figure 4. Evaluation of T cell polyfunctionality. PBMC from all study subjects were stimulated with peptide pools, selected for positive
responses in the IFN-c ELISPOT screening in each individual separately. In A the gating strategy for identification of multifunctional CD3+CD8+ and
CD3+CD82 (CD4+) T cell responses is shown. After physical gating the mononuclear cells and excluding the dead cells, CD3+CD8+T-cells and
CD3+CD82(CD4+ T-cells) were identified. Within each of these populations the expression of IFN-c, IL-2, TNF-a or CD107a was plotted against side
scatter, to allow Boolean gating for the ultimate quantification of polyfunctionality. Polyfunctionality was analyzed using Flowjo by assessing the
percentages of CD3+CD82 (hence CD4+) T cells (in B) and CD3+ CD8+ T cells (in C) that produce one, two, three or four cytokines. Percentages of co-
expression for all selected peptide pools within one patient were summed and the mean+SD was calculated for each group. In D and E is the number
of CD4+ T-cells respectively CD8+ T-cells that produce one, two, three or four cytokines presented. No statistical differences between groups were
found.
doi:10.1371/journal.pone.0037792.g004

Secondary HIV Control: Immune and Viral Correlates

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e37792



secondary non-controllers as well as from aviremic patients under

HAART. Interestingly, the two SC, from whom we could clone

functional Env clones, showed the highest antibody-mediated

autologous virus neutralization amongst all patients in various

groups tested.

Surprisingly, we were unable to confirm correlations of either

EC or SC status with other T cell functions, previously associated

with viral control, including the breadth, the amplitude or the

avidity of responses in ELISPOT. Nor was there any evidence of

more polyfunctional T cell responses in either EC or SC group.

Admittedly, there were some limitations to this study, including

the small patient sample size and the use of frozen PBMC to assess

polyfunctionality, which might explain why we failed to confirm

previously reported correlations for EC.

Viral control and low setpoint have been attributed to specific

HLA types (B57, B58, B27), with genome-wide associations studies

ascribing 12% of viral setpoint variability to HLA related variation

[36–38]. In this small study, no association was observed between

carriage of HLA-B57 allele and viral control in either SC or EC.

However, also other recent studies published about EC and

viremic controllers failed to confirm these associations [39].

Likewise, specific CCR5D32 polymorphisms, previously associated

with lower disease progression [34], were not present in SC,

whereas 50% of EC were heterozygous for D32. Clearly, in our SC

patients, the best known genetic markers could not explain

controller status and therefore other mechanisms may be involved.

Previously it was demonstrated that the level of HIV-1 usRNA

in PBMC, a marker of ‘‘active viral reservoir’’ (i.e. cells in which

active viral RNA transcription and presumably production of viral

antigens is ongoing), when measured in HAART-treated patients

with undetectable plasma viremia, represents a strong predictive

marker for the outcome of therapy [24,40]. The level of the same

marker, measured in untreated patients with stable plasma HIV-1

RNA load, was shown to significantly increase over time [40]. In

the present study, most persons who spontaneously control virus

(EC and SC) had undetectable usRNA levels and in one of the EC

(Patient 5) with a measurable level of us RNA, plasma viremia

emerged later. This is in contrast to HAART-treated patients, in

all of whom usRNA was detectable despite undetectable plasma

viremia. Interestingly, whereas usRNA was undetectable in all

three SC tested, prDNA, a marker of total reservoir (latent and

‘‘active’’) could still be measured in one of them. Taken together

these data show that secondary control is associated with no or

very low numbers of cells in which viral RNA and proteins are

produced, but archival provirus may still be present. Conversely,

the more ‘‘active reservoir’’ in all HAART-treated patients tested

was sufficiently large to be detectable with our assays. This is

because HAART only prevents infection of new cells, but not viral

RNA transcription and protein production in the already infected

cells. Therefore, natural HIV control, as opposed to the HAART-

mediated control, may be exerted mainly through host immune

mechanisms which eliminate cells expressing viral antigens

(‘‘active HIV reservoir’’), possibly explaining why the size of this

type of reservoir in natural controllers (SC and EC) was very low.

In our preliminary study, we provided evidence that the

replication capacity of the endogenous virus in two of our SC was

very low (35) and we were not able to culture the virus of the other

two patients. In the mean time we were able to cultivate virus from

3 out of 4 SC and we performed a fitness analysis on the cultivated

virus. The virus from P4 was easy to cultivate and showed a high

replication capacity, the viruses from P1 and P3 were more

difficult to cultivate and had a low replication capacity. The virus

from P2 was not cultivable in our hands. Clearly, evidence of

lower fitness was present in 3 out of 4 SC. Nevertheless, all four

patients showed either an early (P1 and P3) or late viral blip(s) (P2

and P4) in vivo and therefore, again, a contribution of immune

control seemed likely.

Many studies have focused on identifying the functional

characteristics of CD8+ and CD4+ T cell mediated immune

control [12,41–44], including the ability of T cells to proliferate

and secrete multiple cytokines [42,43,45]. Comparison of magni-

tudes and breadths of responses has shown that breadth of Gag-

specific responses, as defined by IFN-c release, was associated with

antiviral activity and lower viral loads [46], whereas broad

responses against Env were associated with faster disease

progression [7]. We could not find any significant differences in

breadth and magnitude of T cell responses between the different

patient groups. Nevertheless, within the SC, two patients (P2 and

P4) showed very narrow responses and the two others very broad

responses, which seemed inversely correlated with the peripheral

CD4+ T cell counts. However, all four SC could control virus

replication indicating that neither breadth nor magnitude can

explain their secondary controller status.

Avidity of T cells is another factor that could discriminate

between virus control or lack thereof. Almeida et al. have shown

that highly sensitive CD8+ T cells display potent HIV-suppressive

activity [10,47]. In contrast Harrari et al. have reported that HIV-

specific CD8+ T cells with polyfunctional profiles are actually

those that display lower rather than higher levels of antigen

sensitivity [48]. In our study only 1 EC and 1 SC (P2) harbored

high avidity T cells against Gag or Pol but this was certainly not

significantly more as compared to the other groups. Therefore, we

can conclude that the antigen sensitivity of T cells can not explain

the SC status.

T cell polyfunctionality is often described as the ability of a cell

to produce at least 3 cytokines and/or other effector molecules

(chemokines, lytic factors…) and it has been associated with CD8+
T cell mediated virus control [12,47,49]. Moreover, comparison of

polyfunctionality and proliferative capacity of immune responses

between elite controllers and non-controllers has shown that the

ability to control virus is associated with high numbers of HIV-

specific CD8+ T cells that secrete both IL-2 and IFN-c [12,39,49]

and that these responses contribute to the ability of CD8+ T cells

to inhibit virus replication in vitro [50]. Further on, CD8+ T cells

Figure 5. T cell proliferation against Gag and Pol peptides.
PBMC from different patient groups were stimulated with Gag peptide
pools 1–6 and Pol pools 1–12, spanning the entire Gag-Pol region. The
mean stimulation index (SI)+SD for all 4 SC, EC, TN, HAART and SNC is
shown. Statistical differences were measured using Mann-Whitney and
Kruskall-Wallis test (P,0.05) and represented in the upper right insert.
doi:10.1371/journal.pone.0037792.g005
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from high Gag responders were significantly better able to

proliferate [10]. In our study T cells from some SC and EC

indeed showed a higher proliferative response upon stimulation

with Gag and Pol peptides than TN, suggesting that HIV-specific

T cell proliferative capacity may play a role in controlling virus

replication. In contrast to previous studies, we could not prove that

EC and SC had a higher level of polyfunctional T cells. However,

the importance of polyfunctionality as a correlate of protection has

also been questioned in the STEP vaccination trial, amongst

others [51–54].

The role of neutralizing antibodies in the control of viral

replication has been controversial. Some early studies have shown

high titers of heterologous neutralizing antibodies in long-term-

non progressors compared to progressors [55,56]. However, more

recently in EC heterologous neutralizing antibody titers were

shown to be significantly lower than those observed in individuals

with viremia [39,57,58]. In our study significant heterologous

neutralizing antibody titers could not be detected in either HIV

controllers or non-controller patients. With regard to antibodies,

capable to neutralize the patient’s own virus, levels of these

‘‘autologous neutralizing antibodies’’ reportedly are low in

progressors [59,60] and high in long term non progressors [61].

In another study on EC, however, the level of autologous

neutralizing capacity was low [62]. The apparent discrepancy

between LTNP (high autologous neutralization) and EC (low

autologous neutralization) could indicate that a certain level of

viremia (which can be present in LTNP but not in EC) is needed

to drive and/or maintain the neutralizing antibodies. Here,

relatively strong neutralizing activity against autologous virus was

present in the two SC tested (P1 and P4) while it was lower or

absent in the other groups. Unfortunately, we were not able to

study autologous neutralization in our EC. Although our results in

Figure 6. Autologous neutralizing antibodies. IgG was purified and Env was cloned from the same plasma sample in each patient. The
neutralizing capacity of IgG was tested in the TZMbl assay, using single cycle chimeric pseudoviruses, containing the respective autologous Env. This
assay could be performed for 2 SC (A), 2 SNC (B), 3 TN (C) and 2 HAART patients (D). Percent neutralization in Y-axis is shown over a concentration
range of individual patient IgG, given in X-axis. Each patient is represented by one symbol and in many patients several autologous Env clones were
tested.
doi:10.1371/journal.pone.0037792.g006
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SC are suggestive, the contribution of autologous neutralizing

antibodies to viral control needs more study.

In conclusion, despite the low number of patients studied, we

were able to show that both EC and SC have a few viral and

immune characteristics in common, which distinguish both types

of controllers from non-controller groups, including aviremic

HAART-treated patients. These include low levels of intracellular

viral RNA, lower fitness and higher proliferative T cell responses

towards Gag and Pol. Since these particular viral and T cell

characteristics were absent, not only in viremic TN and SNC, but

also in long-term aviremic HAART patients, it is tempting to

speculate that they could be part of the mechanism by which SC

and EC control the virus.

Supporting Information

Table S1 Supplementary data avidity of Gag (A) and Pol
(B) specific T-cells in all patients. A: number of peptides of

Gag and Pol that have reacted in the epitope mapping ELISPOT.
B: Number of deduced epitopes. This number can be equal or

lower than in the ‘‘peptides reacting’’ column, due to the

overlapping nature of the peptides format used i.e. a single

epitope can be present in 2 or 3 overlapping peptides. C: Number

of peptides tested: if not enough cells were available to test all

epitopes, only those were used that were predicted to be restricted

by the patients HLA-type (Los Alamos database). D: Number of

epitope-containing peptides that showed no reaction, although

they reacted in the first ELISPOT. As remark for this experiment

blood from a later date was used, clearly illustrating that epitope

recognition varies over time. E: Number of epitope-containing

peptides that provided a positive ELISPOT at each concentration.
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