
 

  

 

 

 

 

 

 

 

 
1. Introduction 
 

During the past few years, technologies for global molecular 
profiling have revolutionised our understanding of biology with 
improved sequencing technologies leading to major advances in 
genomic and transcriptomic studies [1] and more selective and 
sensitive mass spectrometers driving a rapid expansion of proteomic 
and metabolomic studies [2,3]. Within parasitology, this resulted, for 
instance, in the relatively rapid whole genome sequencing of a whole 
range of pathogens (Plasmodium, Leishmania, Trypanosoma, 
Schistosoma, …) [4-9] and the application of metabolic fingerprints 
for the identification of biomarkers in parasitic infection [10,11]. 
While genomics and transcriptomics study the starting point of the 
molecular cascade leading towards a specific phenotype, metabolomics 
can study the ultimate expression of the genotype and is thus the 
profiling technology that works closest to the eventual phenotype 
[12]. In addition, genome and proteome studies often struggle with 
the functional annotation of identified sequences [13], while the 
metabolome consists of relatively few low molecular weight molecules 
– called metabolites –, many of which are key actors of cellular 
processes which are universal across organisms, such as energy 
metabolism (e.g., glycolysis and the tricarboxylic acid (TCA) cycle) 

 
 
 
 
 
 

 
 

 
  

 
 
 
 
  
 
 
 
 

or the catabolism and anabolism of universal cellular components 
(e.g., amino acid biosynthesis and the urea cycle). Metabolomics is of 
particular interest for the study of our favourite model organisms, the 
unicellular trypanosomatid parasites, including pathogens such as 
Trypanosoma and Leishmania, as their gene expression is regulated 
almost exclusively at the post-transcriptional level [14,15], so that 
genome and transcriptome studies might have limitations, in 
particular when studying the rapid effects of drug treatment or the 
mechanisms of drug resistance.  
Leishmania is a protozoan parasite that alternates between two major 
developmental stages: flagellated promastigotes that occur in the 
sandfly vector and non-motile amastigotes that develop within the 
phagolysosome of mammalian macrophages [16]. This parasite has 
proven to be exceptional in many ways: (i) its chromosomes can vary 
in copy number between strains, and important genes can be amplified 
as circular extrachromosomal episomes [5,17]; (ii) it has a unique 
thiol redox metabolism, lacking glutathione reductase, but possessing 
trypanothione and trypanothione reductase [18,19]; and (iii) 
antimony drug resistance of the parasite has been associated with an 
increased fitness of the parasite instead of the usual fitness cost [20]. 
After unravelling its genome [5,9,21] and gaining a better 
understanding of its transcriptome [22] and proteome [23], the 
Leishmania metabolome is now the focus of several research projects. 
For example, recent studies uncovered metabolic changes that occur 
throughout in vitro promastigote growth [24], but also between 
natural drug sensitive and drug resistant Leishmania strains [25]. In 
this minireview we will discuss the technique of LC-MS 
metabolomics from sampling to generating meaningful results, 
highlighting important pitfalls and discussing the benefits of a systems 
biology approach, using Leishmania as an illustrative example of a 
complex model organism. 
 
2. The LC-MS platform 
 

The favorite technology for global metabolic profiling 
(metabolomics) are so-called hyphenated MS platforms, such as gas 
chromatography-mass spectrometry (GC-MS), liquid 
chromatography-mass spectrometry (LC-MS) or capillary 
electrophoresis-mass spectrometry (CE-MS) [26]. Alternatively, 
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NMR spectroscopy, direct infusion atmospheric pressure ionization 
(API) MS, and other methods, such as Raman spectroscopy and 
Fourier transform infra-red spectroscopy, can be used for higher 
throughput but less specific metabolomics screening experiments 
(fingerprinting) (for a comparison see [13]). The selection of the 
platform is always a compromise between sensitivity, speed and 
chemical selectivity and coverage of the relevant subset of the 
metabolome [27]. One must bear in mind that the chemical diversity 
and the range of concentration of different metabolites is very diverse, 
therefore no single platform provides a complete coverage of the 
metabolome [28].   

For Leishmania, only LC-MS and GC-MS metabolomics studies 
have been reported [24,25,29-31]. Chromatographic separation by 
LC or GC has two main advantages when compared to direct-infusion 
MS: (i) it separates isomers (metabolites of a same mass) which would 
appear as indistinguishable entities in downstream MS analysis; and 
(ii) it minimizes ion suppression in which a more easily ionizable 
species masks the presence of a less ionizable one [32] hence allowing 
a higher quantitative accuracy [33]. The hyphenation of MS, i.e. its 
combination with a chromatographic separation, greatly increases the 
quality of the raw data generated and the number of metabolites to be 
detected, but it also increases the analysis time [27]. A detailed 
comparison between GC-MS and LC-MS – the two main separation 
methods in metabolomics – is described elsewhere [26,28]. In short, 
compared to LC-MS, GC-MS analysis involves a more complex 
sample preparation, since it is only capable of analyzing volatile 
compounds or those that can be made volatile by derivatization [34]. 
In addition, many polar compounds are not detectable by GC-MS, 
and due to the electron ionization (EI) technique used in GC-MS, 
only the most abundant positively charged ions are measured [26,28]. 
However, GC-MS generates reproducible fragmentation patterns, for 
which fragment databases exist (that can be shared between 
investigators), and produces stable retention times, which can be 
matched with existing libraries containing retention time information, 
for a huge array of analytes [13]. This makes it much easier to verify 
the identification of detected metabolites in GC-MS. The LC-MS 
situation is more complex: the atmospheric pressure ionization 
techniques (APCI, ESI) produce both positively and negatively 
charged ions, but suffer more from matrix effects and ionization 
suppression or enhancement. In addition, while LC-MS also generates 
characteristic retention times for each metabolite, which assists in 
metabolite identification, these retention times are more difficult to 
reproduce and compare between laboratories and library matching is 
still at an early stage. In reality, choosing between a GC-MS and an 
LC-MS platform is most often determined by the availability of a 
platform and existing collaborations.  
 
3. From sample preparation to LC-MS measurement 

 
3.1. Choice of life stage 

Many components of the metabolome change only very slowly 
throughout life, making selected metabolites popular biomarkers in 
human medicine (cholesterol being a very common example). 
However, at the cellular level changes can be much more rapid, and 
between different cell types or developmental stages, large fractions of 
the metabolome can be drastically rearranged. This has important 
consequences for the choice of sample for a metabolomics analysis. 
Many unicellular pathogens, especially those that are transmitted 
through a vector, have different life forms. Choosing the correct life 
stage of the organism under study greatly depends on the research 
question. Are the suspected differences expected to be present 
throughout all life stages or only at one specific stage? In the case of 

Leishmania for example, the intracellular amastigotes are the most 
clinically relevant form to study, as only this form occurs in the 
human host. However, amastigotes have as yet not been thoroughly 
studied at the metabolomics level due to several technical constraints 
(difficulty to separate its metabolome from that of the host cell, quick 
transformation to promastigote life stage upon isolation, difficulty of 
obtaining sufficient quantities) [35]. Free-living pathogens, such as 
trypanosomes belonging to the subgenus Salivaria, create fewer 
problems concerning the choice of life stage for metabolomics studies, 
since both the procyclic (fly vector) and the bloodstream form 
(human host) can be easily extracted [36,37]. The extracellular 
promastigote form of Leishmania, which naturally occurs in the 
vector, is easier to culture in vitro and is therefore also the most 
studied life form of the parasite in metabolomics and other studies.  

Another issue often affecting metabolomics studies is that cells 
come in different sizes: when comparing the metabolic profile of two 
samples with a significant difference in cell size, the eventual results 
can be skewed, with the larger cell showing generally increased 
metabolite levels which is superimposed upon the metabolite changes 
of interest. In contrast to, for example, transcriptomics, no commonly 
accepted standard procedure is available for correcting this bias. 
Normalizing the metabolomics results according to the cell size might  
be recommendable if such differences are known to occur. Although 
such a normalization method may seem justified to biologists, many 
LC-MS specialists feel that this is perilous because LC-MS signals do 
not always scale linearly (see further in section 5). The semi-
quantitative nature of LC-MS measurements allows only comparison 
of the same (!) metabolites between different samples within the same 
measurement block, and not comparison of the quantity of different 
metabolites within a given sample. Hence, one single normalization 
factor for all metabolites could over- or under-correct the intensities 
of metabolites with different physicochemical properties. 
Nevertheless, protein content normalization has already been applied 
when comparing the metabolic profile of one Leishmania strain at 
different stages in the promastigote growth curve [24]. In this study, 
it was shown that transformation to the metacyclic form (the smaller 
infective form) was accompanied by a decrease in protein content, 
which is thought to correlate with the decrease in cell size. Hence, by 
determination of the total protein content present in a sample with a 
commercially available kit, differences in cell size can be corrected.   
 
3.2. Sampling  

A sampling protocol that minimizes the biological and technical 
variability is indispensable for any biological metabolite profiling 
study. This is also the case for metabolomics, since the metabolome 
can change very rapidly, for example in response to differentiation 
processes or subtle changes in the environment (such as temperature 
fluctuation, osmotic stress, or nutrient depletion). Thorough 
preparation of the whole sampling pipeline will be imperative to 
ensure a swift sample preparation that minimizes the induction of 
additional biological or technical variability induced by the sampling 
procedure itself. To reduce the technical variability throughout the 
sampling procedure, it is of utmost importance to bring the 
metabolism of the cells rapidly to a halt and avoid leaking of 
metabolites during the various washing steps before the actual 
metabolite extraction. Rapid quenching of the metabolism of 
Leishmania, or related unicellular protozoan parasites, without 
freezing the culture can be best achieved by immersing the culture 
flask in an ethanol bath cooled with dry ice at 0-4 °C for no more 
than 60 s [24,25,30,31,33,36,38,39]. All further manipulations 
should be done on ice or at ice-cold temperatures (0-4°C) in order to  
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maintain this quenched status. After washing the required number of 
cells, typically between 4E+07 to 1E+08, by repeated centrifugation 
and resuspension in cold PBS – 3 washing steps have proven optimal 
with minimal metabolite leakage [39] –, the cells are to be disrupted 
and the metabolites extracted. Several extraction methods specifically 
for Leishmania samples have been thoroughly compared by t’Kindt et 
al., showing that the addition of 200 µl 1:3:1 
chloroform/methanol/water [30] and incubation in a Thermomixer 
for 1 hr (14000 rpm, 0°C) is superior to other heating, mixing, 
vortexing or milling methods [39]. The metabolites can then be 
extracted from the cell debris by centrifugation and stored at –80°C. 
Internal standards (stable isotopes) can be spiked into all samples to 
detect variability in sample processing (spiking should be done before 
extraction) and/or technical reproducibility issues of the analysis 
platform (spiking should be done as a last step before storage). This 
standard protocol is now commonly used for both Leishmania and 
Trypanosoma metabolomics studies [24,25,33,36,38,39]. If lipids are 
of special interest, different organic solvents for optimal extraction of 
lipids such as 2:1 chloroform/methanol should be used and might 
require other disruption methods such as sonication [40]. 

In addition to various control samples, and depending on the 
study outline, other samples can be obtained simultaneously as well. If 
a parallel genomic or proteomic study is planned, for example, it is 
best to prepare these samples at the same time as the metabolomics 
study, due to the variability of the metabolome and the plasticity of 
the Leishmania genome [5,17]. This significantly facilitates later 
integration of the metabolome and the genome, transcriptome and/or 
proteome results into a general systems biology interpretation. 
Furthermore, when processing several strains together, the genome 
sequence can also be used as a quality control to confirm the identity 
of the material used. 
 
3.3. Sample storage 

Just before storage of the metabolomics samples at –80°C, 
samples should be deoxygenated with a gentle stream of nitrogen gas 
for 1 min prior to tube/vial closure [39]. The effect of storing serum 
and urine samples at 4°C for 0 h or 24 h prior to storage at –80°C 
has been shown to be small: the observed variance between samples 
due to storage at 4°C for 24 h was of the same magnitude as the 

analytical variance associated with replicate analysis per sample [41]. 
Dunn et al. recommend analyzing samples within 2 years of sample 
collection and avoiding multiple freeze-thawing cycles of a single 
aliquot [34]. Optimally, a sample should be opened only once and, if 
needed, multiple aliquots of the same subject can be collected [34]. 
To our knowledge, reports on the stability of metabolites present in 
parasite samples, or plasma, serum, urine or cerebrospinal fluid 
samples for that matter are rather scarce [34,41-43].  
 
3.4. Sample list set up  

The decision which samples to measure by LC-MS and in which 
order is far from trivial, as it affects the accurate assessment of 
biological and technical variability.  

Most metabolomics studies include three or four biological 
replicates of each experimental treatment [24,25,30,44,45]. Beside the 
biological replicates, a series of other samples should be included in 
each LC-MS run. First of all, a reference sample should be injected at 
least four to eight times to equilibrate the analytical platform and 
assess the reproducibility of subsequent runs [46]. Preferably, the 
reference sample is similar to the actual samples of interest in 
complexity and composition. In addition, commercially available 
authentic standards can be added to the measurement series to 
compare retention time for metabolite identification. For example, 
Creek et al. describe the use of 2 mixtures of authentic standards (127 
metabolites in total), which can be used to predict retention times also 
for compounds that are not included in the mixture [44]. Finally, a 
dilution series of a pooled sample of all extracts can be included, 
which will help to filter out a substantial part of spurious signals [47]. 
The measurements of both the standards and the reference samples 
should be regularly distributed throughout the sample list so they can 
be used for quality control to assess LC-MS stability [34,48]. 
Additional controls can include cell-free growth medium and 
extraction solvent blanks to filter out contaminant peaks by ‘blank’ 
subtraction. The order of all these samples should be well considered: 
randomization of the different samples within blocks of four 
biological replicates alternated with quality control samples is 
recommended; this will allow detecting systematic variability 
throughout the LC-MS measurement [25]. Figure 1 illustrates a 
recommended  sample  sequence,  based on a dilution series of quality  

Figure 1. Recommended sample sequence for samples from two different experimental conditions (condition 1 = shades of blue, condition 2 = shades of green) 
measured at five different time points. Each condition has two biological replicates. The y-axis represents the measured intensities of the biological replicate, 
whereas the x-axis represents the five different time points. Samples from a dilution series of a quality control pooled reference samples (shades of brown) are 
interspersed at regular intervals in the suggested sample sequence. 

LC-MS metabolomics from study design to data-analysis 

3 

Volume No: 4, Issue: 5, January 2013, e201301002 Computational and Structural Biotechnology Journal | www.csbj.org 



 
 
 
 
 
 
 
control samples and randomization of analytical samples within 
blocks (shown for two biological replicates per sample). For example, 
if all biological replicates of condition 1 are measured first, followed 
by all biological replicates of condition 2, technical issues during the 
LC-MS experiment (in particular the unavoidable column 
degradation) would result in a confounding of experimental and 
temporal factors, seriously interfering with the later statistical 
interpretation of the data. By randomizing the biological replicates in 
a well-considered way, this can be largely avoided (Figure 1). The 
quality control samples which alternate with the biological replicates 
are used to detect and potentially correct for these technical issues. 
 
3.5. LC-MS measurements 
 
Chromatographic separation 

The most widely used liquid chromatography system in 
metabolomic research on Leishmania and related protozoan parasites 
[24,25,37,39] is the HILIC column (hydrophilic interaction liquid 
chromatography): it allows polar metabolites to be retained, whereas 
lipophilic metabolites elute relatively rapidly from the column. This is 
a significant advantage compared to reversed-phase columns, from 
which lipids are difficult to elute and can accumulate and cause ion 
suppression by their background bleed [37]. The performance of two 
HILIC columns with a different inner diameter (2.1 mm versus 4.6 
mm) has been compared and showed that the number of putatively 
identified metabolites dropped nearly two-fold for the wider column 
(from 390 to 220). Using the 2.1 mm HILIC column, 20% of the 
predicted metabolome of Leishmania could be detected [39]. 
However, it was also notable that the narrower column behaved in a 
less reproducible way, especially in terms of retention time drift 
(Figure 2). 

For large batch analysis, the 4.6 mm HILIC might thus be the 
preferable column. To obtain a more complete coverage of the 
metabolome, measurements on different types of columns can be 
combined. For example, since lipids are considered to be biologically 
important in Leishmania drug metabolism [25], lipidomics studies in 
Leishmania are becoming of increasing importance to unravel the 
mechanisms of drug resistance [40]. These studies use different types 
of columns, ranging from HILIC [33] to normal phase [40]. 
 
Mass spectrometry 

For an overview of the existing ion separation methods we refer to 
Watson [49]. In summary, the Orbitrap mass spectrometer is the 

most sensitive instrument currently applied in general metabolomics 
studies: it combines ultra-high mass accuracy (<1ppm) and resolution 
(>100,000) with a high dynamic range (approx. 105), allowing 
unambiguous assignment of a molecular formula to many observed 
masses [28]. LC-MS generally analyzes samples in both positive 
(ESI+) and negative ion mode (ESI–), as they provide 
complementary data. The Orbitrap Exactive configuration is well-
suited for this kind of analysis, since it has a positive–negative polarity 
switch mode which reduces analysis time, amount of sample needed 
and issues related to combining the two modes afterwards if they were 
not recorded simultaneously (such as retention time drift, see section 
5). Time-of-Flight instruments (TOF) are also compatible with 
chromatographic systems interfaced to an ESI source, but linear 
dynamic ranges are around 103 and the resolving power is limited to 3 
ppm [49]. 
 
4. Data-analysis 
 

Despite recent advances in methodology, metabolomics still 
presents a number of challenges, including both technological issues 
and limitations of data interpretation [50]. As typically a large 
amount of signals is detected, data complexity usually is so high that 
it is not possible to interpret data manually; hence, specific software 
tools and algorithms are needed. These types of analysis also require 
fast processors and huge storage capacity, typically in the terabyte 
range for large datasets. Comprehensive overviews of many of the 
existing tools for data processing in metabolomics have been 
presented recently [61-64]. 

General data processing steps include feature or peak detection 
[51], peak matching and several additional steps of signal filtering and 
noise removal [52] (Figure 3). For example, the peak matching step 
involves aligning of the chromatographic features between technical or 
biological replicates of a single sample. Peaks that are not detected in 
all technical replicates can be discarded from further analysis. 
Derivative signals such as isotopes, adducts, dimers and fragments, can 
be automatically annotated by correlation analysis on both signal 
shape and intensity patterns using software tools like CAMERA [53], 
PUTMEDID-LCMS [54] and mzMatch [55]. Such peaks are not 
discarded, but only flagged, so that their assigned annotations can be 
taken into account in the metabolite identification step. 

Metabolite identification in LC-MS is mainly based on matching 
the detected mass with available mass databases and derivative signal 
annotations. In contrast to proteomics, efficient algorithms that can 
reasonably successfully predict and compare the mass fragmentation 

Figure 2. Total Ion Chromatograms of four biological replicates of the same Leishmania sample, measured on both the 2.1 mm HILIC column (left) and the 4.6 
mm HILIC column (right) coupled to an Orbitrap Exactive mass spectrometer with analytical conditions as described in [25]. The chromatogram was plotted in 
IDEOM (“TIC checker” functionality) and shows that the 4.6 mm HILIC column provides considerably more reproducible retention times, facilitating 
downstream analysis and metabolite identification. 
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patterns for tandem MS spectra of metabolites (e.g. MetFrag [56]) 
still need further development. In addition, Creek et al. suggest 
applying a quantitative structure retention relationship (QSRR) 
model on authentic standard compounds to predict retention times of 
chemically similar compounds [44]. Including the predicted retention 
times in the identification step significantly improved metabolite 
identification by removing 40% of falsely identified compounds, 
which had the correct mass but inconsistent retention time.  

As the nature of metabolic experiments and experimental design 
varies widely, there is a demand for software tools that could easily be 
adapted for the evolving demands of data processing, for example, 
adding extra data filtering tools or changing the order of a typical 
processing pipeline. A recent study by Jankevics et al. [45] illustrates 
the configurable software toolkit mzMatch for the complete 
processing of raw mass spectra, including steps for noise filtering and 
compound identification by matching mass databases [55]. The 
PeakML file format [55] used by mzMatch allows users to share data 
with other commonly used software packages such as XCMS [57], 
mzMine [58] and IDEOM [59], giving flexible access to an extended 
set of data processing tools. For instance, IDEOM is a user-friendly 
Excel interface to mzMatch which allows researchers to run a 
comprehensive pipeline for data- analysis and visualization from a 
graphical user interface within Microsoft Excel [59]. Efforts to 
develop such tool chains and (semi-) automated tools for data 
processing in unified data exploration platform will be a priority in 
the near future. 
 
5. Current issues with LC-MS 
 

A major drawback of LC-MS is that it only allows for semi-
quantitative analysis. For example, LC-MS signals do not always scale 
linearly with metabolite concentrations, as has clearly been shown by 
dilution series [47]. The deviation from linearity strongly depends on 
(i) the type of column (HILIC versus C18; HILIC is more prone to 
variations in signal intensity); (ii) the concentration of the metabolite 
(ion suppression occurs more frequently with higher concentrations); 
and (iii) the loading capacities of the column. Therefore, it is 
important to always interpret the metabolite profiles in terms of 
relative quantification, where the raw peak height of a metabolite of 
interest is compared to the raw peak height of the same (!) metabolite 
in a reference sample or, for example, other samples in a time series. 
During the last few years, however, absolute quantification of selected 
compounds using 13C-labelled standards is gaining ground in global 
metabolomics studies [13,28,60], providing unique insights into the 
dynamics of metabolic fluxes, beyond the steady-state information 
gathered by routine mass spectrometry [60]. The Maven [61] and 
mzMatch-ISO packages can be used to process isotope-labeled data 
sets [http://mzmatch.sourceforge.net/untargeted_labelling.php].  

The combination of LC-MS based metabolomics data that were 
collected over a longer period of time on the same platform and in the 
same laboratory remains problematic due to the systematic variability 
between LC-MS measurements [62]. This systematic variability 
includes variable ionization (influenced by many factors, such as co-
elution of other metabolites, salts, pH of the mobile phase etc.), drift 
in retention time (column degradation or replacement), and drift in 
mass calibration (changes in temperature and electronic circuitry). 
Samples that need to be compared should therefore preferably be 
measured in the same run (and if possible in randomized order), 
although total run length should be limited, because contamination 
will cause drifts in the measured response and retention time over 
relatively short analysis periods (tens of injections). These drifts in 
both retention time and mass accuracy are detrimental for platforms 

such as LC-MS that depend on these parameters for identification 
[34]. A drift in retention time can occur when a large number of 
metabolite extracts is measured in one run on the LC-MS platform or 
during different analytical blocks that need to be pooled afterwards. 
This can result in sets of peaks of a single metabolite being considered 
as belonging to two different compounds in the peak matching step. 
Re-alignment of the retention time over different samples with the 
OBI-Warp tool [63] followed by gap-filling (secondary peak picking 
step to retrieve missing signals within a specified retention time and 
mass window from the raw data files) [64] can be applied and will 
significantly reduce the number of double identifications in the 
eventual list of identified compounds (Fig. 3). To handle drift in 
mass calibration, ubiquitously detected contaminants of known exact 
mass can be used for internal mass calibration or to align spectra after 
the unavoidable mass drift during long term studies [12]. One can 
also include replicate measurements of a series of authentic standards 
(e.g. the ones used for the above mentioned QSSR model) covering 
the whole mass range of interest, which will allow recalibrating during 
data processing.  
 

 
 
 
 

 
When large metabolomics studies divided over a series of 

analytical blocks cannot be avoided, normalization of the data can be 
considered. Dunn et al. suggest using a standard quality control 
sample representative of the sample type under analysis to allow for 
signal correction within and between analytical blocks [34]. This kind 
of normalization is model-driven, where an external model is 
extrapolated to the dataset of interest. More data-driven 
normalization methods, which originate from microarray studies and 
have already been applied on NMR metabolomics data [65], are 
currently under evaluation on LC-MS metabolomics data 
(unpublished data). 

Figure 3. Schematic overview of an LC-MS metabolomics data processing 
pipeline.  
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6. Outlook and Concluding Remarks 
 

Metabolomics has been a new rising star during the last few years, 
but as is the case for many new innovative platforms, there naturally is 
still a lot of room for optimization. For instance, the LC-MS 
platform could further benefit from technical improvements for more 
stable column design (to minimize inter-column variation) while 
awaiting the next-generation mass spectrometers with even higher 
resolving power, mass accuracy and multiple fragmentation 
techniques. Although the data processing step is becoming more 
accessible to non-specialists, efforts to develop (semi-) automated 
tools for data processing and user-friendly interfaces (e.g. IDEOM) 
are still highly needed. Last but not least, the increase of large-scale 
metabolomics projects urges the further development of 
normalization methods to pool results of different samples that need 
to be compared.  

It is clear that studying the metabolome, lying closest to the 
phenotype, together with other global molecular profiles, such as the 
genome, transcriptome or proteome, can significantly enhance our 
insights into the interactions between the different components of 
biological systems and how these interactions give rise to a specific 
behavior of that system and result in a phenotype [66]. Furthermore, 
the integration of metabolomics and genomics datasets will also 
contribute to differentiate ‘driver’ mutations from biologically neutral 
‘passenger’ changes. However, the integration of different molecular 
profiling datasets into one comprehensive, easily consultable entity 
requires an even greater deal of bioinformatics. Even in arcane areas of 
biology, such as the research on protozoan parasites causing neglected 
tropical diseases, a rich tradition of metabolomics research has 
accumulated in a surprisingly short time [12,13,24,25,28-
31,33,36,37,39,40,65,67]. This minireview, illustrating the 
application of LC-MS metabolomics with examples selected from 
Leishmania parasite studies, from sampling to data-analysis, 
highlighted the advantages of the LC-MS platform, but also possible 
pitfalls which can affect metabolomics research on other (complex) 
biological systems as well. Untargeted metabolomics studies have 
shown to disclose complete pathways that respond to drug action, 
contributing to unraveling the mode of action of these drugs [36]. 
We expect that even deeper insights into more complex phenotypes, 
especially the vexing issue of emerging drug resistance, will be 
provided by carefully designed metabolomics studies in the coming 
years. 
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