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The geographical distributions of the arboviruses dengue, yellow 
fever, chikungunya and Zika have expanded, causing severe 
disease outbreaks in many urban populations1–5. Transmission 

of these viruses depends, with few exceptions, on the presence of the 
competent mosquito vectors Ae. aegypti (also known as Stegomyia 
aegypti) and Ae. albopictus (also known as Stegomyia albopicta)6,7. 

Past and future spread of the arbovirus vectors 
Aedes aegypti and Aedes albopictus
Moritz U. G. Kraemer   1,2,3,42*, Robert C. Reiner Jr4,42, Oliver J. Brady5,6,42, Jane P. Messina7,8,42, 
Marius Gilbert9,10,42, David M. Pigott4, Dingdong Yi11, Kimberly Johnson4, Lucas Earl4, Laurie B. Marczak4, 
Shreya Shirude4, Nicole Davis Weaver   4, Donal Bisanzio12,13, T. Alex Perkins14, Shengjie Lai15,16,17, Xin Lu18,19,20, 
Peter Jones21, Giovanini E. Coelho22, Roberta G. Carvalho23, Wim Van Bortel   24,25, Cedric Marsboom26, 
Guy Hendrickx26, Francis Schaffner27, Chester G. Moore28, Heinrich H. Nax29, Linus Bengtsson17,30, 
Erik Wetter   17,31, Andrew J. Tatem16,17, John S. Brownstein2,3, David L. Smith   4, Louis Lambrechts   32, 
Simon Cauchemez33, Catherine Linard   9,34, Nuno R. Faria   1, Oliver G. Pybus1, Thomas W. Scott35, 
Qiyong Liu36,37,38,39, Hongjie Yu15, G. R. William Wint1,40, Simon I. Hay   4,43* and Nick Golding   41,43*

The global population at risk from mosquito-borne diseases—including dengue, yellow fever, chikungunya and Zika—is expand-
ing in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus. The distribution of these 
species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, 
we show that human movement patterns explain the spread of both species in Europe and the United States following their 
introduction. We find that the spread of Ae. aegypti is characterized by long distance importations, while Ae. albopictus has 
expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both 
species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that 
aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of 
these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes 
and thereby augment efforts to reduce arbovirus burden in human populations globally.
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Previous predictions of the future distributions of Ae. aegypti and 
Ae. albopictus have focused solely on climate, despite the known 
importance of urbanization and other socioeconomic factors in 
defining suitable habitat8. Moreover, those projections assumed that 
both species can fully infest all areas of predicted newly suitable 
habitat4,9. Recent trends in the global spread of these species, how-
ever, suggest that the process of expansion may be more complex 
and spatially structured than previously acknowledged10. Expansion 
from the native ranges of Ae. aegypti (from African forests) and  
Ae. albopictus (from Asia) was precipitated by a shift from zoophily 
to anthropophily and by adaptation to container-breeding in domes-
tic or peridomestic environments11,12. While their short flight ranges 
limit self-powered dispersal13, a century of rapid human population 
growth and international trade has enabled their global spread. 
Trade in items such as tyres and potted plants have provided poten-
tial larval development habitats and have led to the intercontinen-
tal dissemination of their desiccation-resistant eggs14–16. Moreover, 
the establishment of Ae. albopictus in locations with cooler climates 
has been aided by its ecological plasticity, with eggs able to undergo 
diapause (dormancy) as one possible explanation for populations 
persisting through winters that are too cold for adult survival17,18.

While the various routes of intercontinental importation 
are well described11,19, the processes underlying intracontinen-
tal spread of the species remain poorly quantified, preventing an 
informed prediction of future distributions. Modelling of human-
mediated range expansion suggests that quantitative models of 
human movement could, and should, be used to predict intraconti-
nental spread20–22. To address this, we developed predictive models 
of Ae. aegypti and Ae. albopictus spread and combined these with 
forecasts of future climatic conditions and urban growth to predict 
the ranges of these medically important vectors from 2015 to 2080 
(Supplementary Fig. 1).

We collated spatially and temporally explicit data on the dis-
tributions of Ae. aegypti and Ae. albopictus and their spread over 
time in the United States and of Ae. albopictus in Europe (Fig. 1; 
Supplementary Figs. 2 and 3). Extending on a previous study4, 
we first mapped contemporary habitat suitability for each species 
together with projected suitability in 2020, 2050 and 2080 under 
three different representative concentration pathways (RCPs) and 
17 global climate models (GCMs), as well as under projections 
of urban growth. We then parameterized quantitative models of 
human mobility using census data on migration and commuting 
patterns23,24, and general movement patterns derived from mobile 
phone logs (or call detail records (CDRs))23–25 (Supplementary 
Fig. 1). The combined predictions from these different mobility 
models and datasets capture different aspects of human travel and 
trade, and their ability to spread Aedes eggs and juveniles at differ-
ent spatial scales.

We tabulated annualized presence records that documented 
the first detection of each species in 1,567 different locations over 
39 years in Europe (225 out of 1,588 districts between 1979 and 
2017) and 32 years in the United States (1,342 out of 3,134 coun-
ties between 1985 and 2016) (Supplementary Fig. 2a–c). These 
data were used to parameterize statistical models of spatial spread 
for each species. Detection within a given area was modelled as a 
function of the following factors: (1) the receptivity of the area (as 
determined by the habitat suitability models); (2) long-distance 
importation pressure (from multiple human movement models); 
and (3) short-distance importation pressure from adjacent areas 
(to represent natural dispersal). Forward simulation of these fitted 
models of spatial spread was then used to predict the future spread 
or recession of each species, considering climate changes, urbaniza-
tion and human-mediated importation. To account for potentially 
biased sampling procedures, we performed a comprehensive sensi-
tivity analysis assuming different levels of detection for both species 
(Supplementary Information).

Results
Short-range importation between adjacent districts played a greater 
role in the inferred spread process for Ae. albopictus (Fig. 1a,c,d,f) 
than for Ae. aegypti (Fig. 1b,e), which was more frequently imported 
over longer distances. Historically, most of the observed range 
expansion of Ae. aegypti in the United States originated from the 
southern states (Fig. 1b; Supplementary Fig. 2b). Using thin plate 
spline regression, we estimated the localized invasion velocity of  
Ae. aegypti spread in the United States to be relatively homogeneous 
at ~250 km per year (Fig. 1b,e). Ae. albopictus spread in the United 
States was fastest between 1990 and 1995 (Fig. 1a,d) and has since 
slowed to ~60 km per year. In contrast, the estimated rate of spread 
of Ae. albopictus in Europe is faster (~100 km per year), rising to 
~150 km per year over the past 5 years (Fig. 1c,f; Supplementary 
Fig. 2c,f,i). The geographical origin of recent Ae. albopictus spread 
in Europe seems to be Italy, with the Alps serving as a dispersal bar-
rier that lowers the rates of spread (Supplementary Fig. 2c,f). Once 
that barrier has been overcome, however, spread rates beyond the 
Alps are as high as in Italy. This may explain the increased rate of 
spread in recent years, which also corresponds to the detection of 
Ae. albopictus in areas north of the Alps (Supplementary Fig. 2c,f).

Using human-mobility-driven statistical models, we can pre-
dict the past spread of both mosquito species with high reliability 
(Supplementary Fig. 6) and accuracy (out of sample area under 
the receiver operating characteristic curve (AUC) value of 0.7–0.9; 
Supplementary Fig. 7). Compared with models that only included 
distance and adjacency metrics, only slight improvements are 
observed when including human mobility models (Supplementary 
Information; Supplementary Fig. 12). Furthermore, we evaluated 
the ability of our models to predict the range expansion in Europe 
using a model fitted to the US data (1,149 records) only. This test 
similarly documented a high degree of predictive ability (out of 
sample AUC value of 0.8–0.9; Supplementary Fig. 8). In addition, 
country borders do not seem to limit the spread of the mosquitoes 
(Supplementary Fig. 11), and our spread model is robust even under 
different assumptions in mosquito sampling strategies. However, 
the underlying observational data may affect our estimates of veloc-
ity of spread (Supplementary Information). In contrast, the model 
fitted to only European data was unable to predict the spread in the 
United States, presumably because of the relatively few Ae. albopictus 
records in Europe compared with the United States (192 records). 
Therefore, we used the model fitted to US data to project the range 
of both species into the future (Supplementary Information). Both 
Ae. aegypti and Ae. albopictus are anticipated to continue expanding 
beyond their current distributions (Supplementary Figs. 4 and 5).  
For Ae. aegypti, predicted future spread is mostly concentrated 
within its tropical range and in new temperate areas in the United 
States and China, reaching as far north as Chicago and Shanghai, 
respectively, by 2050 (Figs. 2 and 4; Supplementary Fig. 4). At the 
expansion front in the United States, our model predicts the spread 
to occur mostly through long-distance introductions in large urban 
areas (Fig. 2a,b; Supplementary Fig. 10). Even under the most 
extreme scenarios (RCP 8.5 in 2080), Ae. aegypti is predicted to 
establish in Europe in only a few isolated regions of southern Italy 
and Turkey (Supplementary Fig. 4). By 2080, we predict that there 
will be 159 countries worldwide (range, 156–162) reporting this 
species, of which three (range, 0–6) will be reporting it for the first 
time (Supplementary Table 8).

By contrast, Ae. albopictus is expected to spread broadly through-
out Europe, ultimately reaching wide areas of France and Germany 
(Fig. 3b). Areas in northern United States and highland regions of 
South America and East Africa are also projected to see establishment 
of Ae. albopictus over the next 30 years (Figs. 2 and 4). At the same 
time, some areas are predicted to become less suitable for the spe-
cies, particularly locations in central southern United States (Fig. 2;  
Supplementary Fig. 5) and Eastern Europe (Fig. 3), where climate 
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models indicate that aridity will increase. Due to the broader dis-
tribution of Ae. albopictus in northern latitudes, as in the United 
States, the spread pressure follows a clear front-like expansion  
(Fig. 2c,d). In total, 197 countries (range, 181–209) are expected to 
report Ae. albopictus by 2080, with 20 (range, 4–32) of those countries 
reporting its presence for the first time (Supplementary Table 8).

Spread of both species over the next 5–15 years is predicted to 
occur independently of extensive environmental changes, as both 
species continue to expand into their anthropogenic ecological 
niches through spatial dispersal. Ae. albopictus is anticipated to sat-
urate its ecological niche between 2030 and 2050 (Fig. 4d, f), and 
Ae. aegypti by 2020 (Fig. 4a,c). Beyond these dates, the predicted 
expansion of these species will be driven primarily by environmen-
tal changes that create new habitats, including changes in climate, 

especially temperature (Supplementary Tables 1 and 2), as well 
as exploitation of the increased availability of large human urban 
environments. Thus, efforts to curb or reverse climate change 
are predicted to be insufficient to fully prevent the expansion of 
these vector species. Significantly greater expansion, however, 
is predicted, especially between 2050 and 2080, if emissions are 
not reduced (Fig. 4). At the same time, future human population 
growth is expected to be concentrated disproportionately within 
areas where Ae. aegypti and Ae. albopictus will already be estab-
lished, leading to large increases in the global population at risk of 
diseases transmitted by these species.

Overall, our predicted expansions will see Ae. aegypti invading 
an estimated 19.96 million km2 by 2050 (19.91–23.45 million km2, 
depending on the climate and urbanization scenarios), placing an 
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Fig. 1 | Reconstruction of Ae. albopictus and Ae. aegypti spread. a–c, Spread of Ae. albopictus (a) and Ae. aegypti (b) in the United States, and spread of 
Ae. albopictus in Europe (c). Estimates of speed of spread in km per year are based on thin spline regression on mosquito observations since their earliest 
detection in each continent. Red indicates fast dispersal whereas yellow and white indicate slower spread velocity measured in km per year (see legend 
below b). Areas highlighted in grey have no reported mosquito presence. d–f, Summaries of the speed of dispersal of Ae. albopictus (d) and Ae. aegypti  
(e) spread in the United States and of Ae. albopictus spread in Europe (f) starting from their date of first detection until 2017. The red line indicates the 
average velocity per year across all districts using the thin spline regression model.
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Fig. 2 | Predicted future spread of Ae. aegypti and Ae. albopictus in the United States. Spread was estimated using human-mobility metrics and ecological 
determinants fitted to past occurrence data. a, Forecasted change in the distribution of Ae. aegypti between 2020 and 2050 using the medium climatic 
scenario RCP 6.0 at the US county-level ranging from −0.25 (blue) to 0.25 (red). Red indicates expansion and dark blue contraction of the Aedes range 
distribution between 2020 and 2050. b, The predicted habitat suitability for the presence of Ae. aegypti in 2050. Pixels with no predicted suitability are in 
grey. c,d, The corresponding results of a and b for Ae. albopictus.
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Fig. 3 | Predicted future spread of Ae. albopictus in Europe. a, The expansion (red) and contraction (blue) of Ae. albopictus between 2020 and 2050 under 
the medium climate scenario RCP 6.0, with emissions peaking in 2080. b, The predicted distribution of Ae. albopictus and predicted habitat suitability for 
the presence of Ae. albopictus in 2050. Pixels with no predicted suitability are in grey.
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estimated 49.13% (48.23–58.10%) of the world’s population at risk 
of arbovirus transmission (Fig. 4c, f).

Few countries conduct routine, systematic surveillance for  
Ae. aegypti and Ae. albopictus. Consequently, our analysis relies on 
datasets from the United States and Europe that contain spatiotem-
poral biases in reporting (Supplementary Fig. 2), with an implicit 
assumption that the processes driving spread in these regions apply 
elsewhere. These regions have a comparatively high capacity to track 
establishment and mitigate the spread of these species, and have 
openly available datasets on human movement26. Our modelled rate 
of spread is therefore most likely to be biased towards an underesti-
mate of the global rate of spread (Supplementary Information). We 
did not model potential changes in human mobility, which could 
increase the rate of spread of both species as population mobility 
increases. Competitive displacement may occur between these two 
species, but this possibility could not be included in this analysis 
due to a lack of available data27,28. However, current ecological lit-
erature and ecological theory suggests that interspecific competi-
tion occurs primarily at localized spatial scales and has not been 
found to influence the distributions of species at a coarser spatial 
resolution, such as the scale we consider here29–31. As both species 
are already established on every human-inhabited continent on the 
planet, we did not model spread between continents.

Discussion
In the context of predicting mosquito-borne viral transmission, 
Aedes distribution maps have already been shown to help predict 
the local32, regional33,34 and international1,2,6,7,35,36 spread of chi-
kungunya, dengue, yellow fever and Zika viruses. Moreover, local 
outbreaks of these arboviruses have typically followed within 5–15 
years of infestation by Ae. aegypti and Ae. albopictus37,38, emphasiz-
ing the importance of vector spread importation as a key risk factor 
for arbovirus transmission.

There is significant uncertainty surrounding future predictions 
of changes in climatic conditions. We used an ensemble approach 
to propagate the uncertainty from climate scenarios through our 
predictions of both Aedes species (Figs. 2, 3 and 4; Supplementary 
Figs. 4 and 5).

Even under current climate conditions and population densi-
ties, both vector species will continue to spread globally over the 
coming decades, filling unoccupied suitable habitats and posing a 
risk to human health in the majority of locations where they survive 
and reproduce. Thus, efforts to prevent their global dissemination 
in the near future will be most effective if focused on preventing 
human-mediated spread and establishment. To prevent introduc-
tions, countries should strengthen entomological surveillance, par-
ticularly around high-risk introduction routes such as ports and 
highways, and develop rapid response protocols for vector control 
to prevent introduced mosquitoes from establishing permanent 
populations39–43. We expect such efforts will need to intensify over 
time as human populations become ever more connected and urban 
agglomerations grow further9.

Beyond 2030 and especially 2050, the distributions of both spe-
cies will continue to expand, coinciding with niche expansion into 
climatically suitable urban areas as opposed to the exploration of 
the current niche. Increased urbanization worldwide has already 
put great strains on our ability to prevent the spread of certain 
disease vectors and has intensified endemic transmission of arbo-
viruses44. Some areas may become less suitable for human habita-
tion due to the effects of climate change, reducing the number of 
people living in areas at risk. In the longer term, reducing emis-
sions of greenhouse gases would be desirable to limit the increase 
in suitable habitats for Ae. aegypti and Ae. albopictus. Every effort 
must be made to limit factors that contribute to the global spread of  
Ae. aegypti and Ae. albopictus if we are to limit the future burden  
of the diseases vectored by these mosquitoes.

Methods
We used a combination of the following two approaches to estimate the 
predicted future distribution of Ae. aegypti and Ae. albopictus: (1) projecting 
the environmental suitability of both species using a set of seven environmental 
covariates and (2) simulating the spread within each continent using past dispersal 
patterns of these species, human movement data and between region adjacency 
matrices (Supplementary Fig. 1). Here, we describe the models and data sources for 
both processes.

Data. Global mosquito occurrence data. We used a previously collated database of 
19,930 and 22,137 geopositioned occurrence records for Ae. aegypti and  
Ae. albopictus, respectively45 (Supplementary Fig. 3). Each of these records 
corresponds to a unique detection of a mosquito population in a given location at 
a given point in time, as described in detail elsewhere45. We excluded records that 
were classified as temporary presence when such information was available.

Environmental and socioeconomic covariates. Aedes survival is influenced 
by a variety of climatic and environmental factors, such as long-term and 
interannual temperature46,47, water availability (described as relative humidity and 
precipitation) and degree of urbanization. We used projections from the RCP 
developed by the Intergovernmental Panel on Climate Change48, which represent 
different assumptions about emission scenarios that might result in a variety of 
climatic changes over the next 65 years. Here, we use RCPs 4.5, 6.0 and 8.5, which 
assume emission peaks around 2040, 2080 and increases throughout the twenty-
first century, respectively48. These time points were chosen because of the following 
reasons: (1) 2020 represents the date when the climate-mitigating policies of the 
Paris Agreement within the United Nations Framework Convention on Climate 
Change will come into action49; (2) 2080 corresponds to the date of the emission 
peaks modelled according to the RCP 6.0 scenario; and (3) 2050 represents the 
midpoint between these dates. We use an ensemble of 17 GCMs and pattern 
scaling to produce monthly mean values of maximum and minimum temperature 
and monthly totals of rainfall as used in MarkSim. Humidity data were calculated 
from temperature estimates (for details, see the “Future projections” section). 
To complement the changes in temperature, relative humidity and precipitation, 
we modelled a continued process of global urbanization until 2080 using a 
probabilistic machine learning algorithm based on a previously described 
method50. Here, we used urban growth rates projected by the United Nations as a 
predictor variable51 as well as a range of other critical covariates, as  
described previously50.

Mosquito spatial spread data. A unique set of time-series occurrence records for 
both species were abstracted from previous studies4,45 and updated with records 
obtained from another published study52. Records were available for Ae. aegypti 
in the United States from 1995 to 2016, with US county-specific information 
regarding whether the species was present or absent. For Ae. albopictus, 
information was available from the United States (1985–2013) and from Europe 
(1979−2017) (Fig. 1; Supplementary Fig. 2). We considered these time periods 
because they show consistent expansion of the species distribution, as  
described previously52.

For the United States, counties were identified as reporting the presence 
of either species in a given year if at least one specimen of any life stage of 
the mosquito was collected, using any collection method52. Sampling efforts, 
techniques and temporal resolution were heterogeneous across counties and states 
in the United States. Therefore, the baseline presence datasets may classify some 
areas as absent where either of the two Aedes species considered may be present.

For Europe, Administrative/Statistical units (NUTS3) were identified as 
reporting establishment of either species in a given year if immature stages and 
overwintering were observed, using any collection method. Sampling efforts, 
techniques and temporal resolution were heterogeneous across countries, and 
either species may have been absent before investigations were triggered by citizen 
complaint. Therefore, dates correspond to published reports or expert-shared data 
(VBORNET and VectorNet), and a species could have established earlier in some 
locations where regular surveillance had not been implemented. Because we were 
not able to quantify the sampling biases, we instead employed a sensitivity analysis 
to account for potential under- or over-reporting (see the “Mosquito spread 
modelling” section).

Human mobility datasets. Overland human movements are known to drive the 
importation of both species40,41,43. Therefore, we used human movement data to 
infer the connectivity between regions as a proxy for importation risk of Ae. aegypti 
and Ae. albopictus.

US commuting data. For the United States, where both species have been 
spreading successfully, we obtained data on workforce commuting flows from 
county to county between 2009 and 2013 conducted by the American Community 
Survey. Data are freely available at http://www.census.gov/hhes/commuting/. 
Here, commuting was defined as a worker’s travel between home and workplace, 
where the latter refers to the geographical location of the worker’s job. Daytime 
population refers to the estimated number of people who are residing and working 
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in an area during ‘daytime working hours’. The data represent 3,134 counties, 
including 50 states and the District of Columbia but excluding Puerto Rico. 
The generalizability of this dataset has been demonstrated in studies that have 
successfully approximated human movements derived from mobile phone data 
and predicted the spread of infectious diseases24. As described in detail below in 
the “Human mobility modelling” section, we considered gravity and radiation 
movement models as well as nearest neighbour-type movements for human 
movement. We used the fitted models from the United States to extrapolate to all 
other regions in the Americas using the movement package in R53.

European mobile phone data. For Europe, we obtained mobile phone data (or 
CDRs) from the following three countries where Ae. albopictus is present or has 
recently been detected: France45, Portugal54 and Spain45. CDR data contain the time 
at which a call was made or a text message was sent, the duration of the call, and 
the code of the mobile phone in which communication started. The mobile phone 
corresponds to an area covered by a specific mobile phone tower that serves a 
particular area. This means that the spatial resolution is restricted to the tower area, 
and the specific location of each individual in the dataset cannot be ascertained. 
As our analysis was performed at the district level, all users’ activity profiles were 
aggregated up to the district level, which is generally larger than mobile phone 
tower areas. We thereby obtained a connectivity matrix that shows the connections 
made between each district i to each district j within each respective country.

For Portugal, data were available from over 1 million mobile phone users 
between April 2006 and March 2007 (12 months). In Spain, CDRs were extracted 
from 1,034,430 users over 3 months between November 2007 and January 2008. In 
France, we had the largest sample of 5,695,974 users, collected between September 
2007 and mid-October 2007, covering the entire country. Other aspects of the 
collection and processing methods have been described in detail elsewhere23. We 
used the fitted models from Europe to extrapolate to all other regions in Europe, 
using the movement package in R53.

Human movement data for Asia. Mobility matrices for Asia were inferred from 
data from Chinese users of Baidu, the largest location-based service (LBS) in 
China. Baidu offers a large variety of apps and software for mobile devices and 
personal computers, mostly for online searching. We extracted global positioning 
system (GPS) data from 23 April 2013 to 30 April 2014 (about 400 million users in 
China). The raw data were collected at the county level (n = 2,959) and aggregated 
to the prefecture level (345 prefectures). We then estimated daily flows of people 
between each pair of counties and aggregated this information per year. Movement 
is recorded in the Baidu data such that on each day, if a user was observed at 
locations A→B→C, then A→B and A→C are counted, which may produce biased 
population flow estimates. To explore potential bias in the data, we compared the 
data derived from Baidu to a complete dataset of taxi-based GPS locations in the 
capital city of Hunan province, covering a 1-week period (full details below). The 
correlation of origin-to-destination flows in the city between the Baidu data and 
the complete taxi GPS data was very high (R2 = 0.99).

Baidu data validation. To verify the validity of the Baidu LBS data, we obtained a 
complete dataset of GPS locations for all taxis in Changsha city (capital of Hunan 
province, with a population of 7 million) in 2014. For regulatory reasons, the 
location of each taxi is recorded using a GPS device in each taxi. The location is 
updated every 30 s. There were approximately 7,000 taxis in Changsha, resulting 
in 20.16 million records (7,000 × 24 × 60 × 2) on a daily basis. The status of the 
taxi was also recorded, such as the locations where passengers got on and off. 
These data were then used to extract the movements between the following five 
districts in the main area of Changsha: Kaifu, Furong, Yuhua, Tianxin and Yuelu. 
For the purpose of comparison, 1 week of data (4 April to 17 April 2016) were 
extracted and analysed. The movements were normalized and then compared 
with the same week in 2014 from the Baidu LBS data. The correlation between 
the mobility estimates extracted from the Baidu LBS data and from the taxis’ GPS 
data for Changsha city is presented in Supplementary Fig. 9. There was a high 
level of similarity between the two datasets, with a correlation coefficient of 0.99 
(P = 0.001). We subsequently used the fitted models from China to extrapolate to 
other regions in Asia and Oceania, again using the movement package in R53.

Human movement data for Africa. To calibrate the gravity and radiation models 
for Africa, we used aggregated and de-identified mobile phone-derived mobility 
estimates at the constituency level from Namibia between 1 October 2010 and 
30 September 2011. These data represent the proportion of time that unique 
subscriber identity module (SIM) cards in each constituency spend in all other 
constituencies, as previously described in detail55. We used this dataset from 
Namibia because it was openly available and because it offered the best spatial  
and temporal resolution compared to census-derived data. We then used the  
fitted models to extrapolate to all other regions in Africa using the movement 
package in R53. Systematic surveys of cross-border human movements were not 
available at the time of the study and for the study regions.

It is possible that there are significant differences between regions in terms 
of mobility, but unfortunately no sufficiently widespread and well-resolved data 
source was available to test this. Our model captured the spread process of Aedes 

mosquitoes using a variety of human movement data, including both CDR data 
and commuting data. To assess the generalizability of our results, we applied 
the model fitted to commuting data in the United States to the range expansion 
process observed in Europe. The predictive ability of this cross-continental 
validation indicates that the mobility data used are sufficiently robust in the 
context of this study (Supplementary Fig. 8). However, we note that there may be 
several limitations to using commuting data to infer vector introductions as they 
overly emphasize work-related movements. To test whether our model would 
perform well even in the absence of human movement data, we performed a 
cross validation that used only distance and adjacency matrices; this process only 
marginally reduced predictability (Supplementary Fig. 12). Despite this, such data 
have indeed been used in the United States to successfully predict the long-distance 
spread of infectious diseases. We are therefore confident that such data can be 
applied to predict both short- and long-distance spread in the United States56. 
Similarly, CDR data have been used to describe the spread of pathogens such as 
influenza in Europe23. As new data become available, our model is flexible enough 
to incorporate them, and estimates of the predicted range expansion of Ae. aegypti 
and Ae. albopictus can be updated. There was also no suitable data available on 
cross-border movements that could improve estimates of between-country spread 
(see the “Mosquito spread modelling” section for a sensitivity analysis).

Model fitting to data. Description of speed of dispersal. To understand the past 
range expansion of both species and to provide basic summary statistics of the 
speed of dispersal over time in areas where sufficient observations were available, 
we used previously described methods of spread rate measurements57. For each 
species and study area, the centroids of the spatial units where the species were 
observed were re-projected in a metric system (EPSG Geodetic Parameter Dataset 
102003 in the United States, and EPSG 3035 in Europe), and the first date of 
detection in each centroid was interpolated on a 10-km resolution grid using 
thin plate spline regression. The local slope of the surface was measured using a 
3 × 3 moving windows filter, and the resulting friction surface (time/distance) was 
smoothed using an average 11 × 11 cell filter to prevent local null frictions values. 
The local spread rate was then obtained by taking the inverse of the friction value. 
This measure was computed within a mask, which was obtained by kernel density 
smoothing of the centroids of spatial units where the species were observed. We 
used a previously described method58 to determine the optimal bandwidth for the 
US and European invasions. To obtain a similar bandwidth for all masks, we used 
the maximum of the three estimated optimal bandwidths, which was found to be 
73.2 km. A density threshold of 2.9 points per 10,000 km2 was chosen to delineate 
the mask, which was the maximum threshold value that allowed the inclusions of 
all observation points in the mask in both the United States and Europe.

Mosquito environmental niche modelling. To predict the likely future distributions 
of both species independently (in years 2020, 2050 and 2080), we first fitted species 
distribution models to data from the present day. This approach built on previous 
work4 using the boosted regression tree (BRT) models fit to mosquito occurrence 
data (see “Global mosquito occurrence data” section). BRTs combine strengths 
from regression trees and machine learning (gradient boosting) and are able to 
accommodate nonlinear relationships to identify the environmental niche in which 
the environment is suitable for the species in question. After an initial regression 
tree is fitted, it is iteratively improved in a forward stepwise manner (boosting) 
by minimizing the variation in the response variable not explained by the model 
at each iteration. This approach has been shown to simultaneously fit complex 
nonlinear response functions efficiently while guarding against over-fitting.

We first developed a baseline scenario for the year 2015 using the global dataset 
of Ae. aegypti and Ae. albopictus occurrence (see “Global mosquito occurrence 
data” section)45,59 and a set of environmental and socioeconomic predictors (see 
“Environmental and socioeconomic covariates” section). In a BRT modelling 
framework, pseudo-absences need to be generated to allow for discrimination 
between areas where the mosquitoes can persist and to identify biases in 
reporting60. We used a previously described approach4 using background points 
from the Global Biodiversity Information Facility and the inverse of an Aedes 
temperature suitability mask47 with an equal ratio between presence and absence 
points and no threshold applied. From that, we constructed 100 submodels to 
derive the mean prediction map and model-fitting uncertainty using the SEEG-
SDM package in R61,62.

Human mobility modelling. Given the heterogeneous abundance of both species63 
as well as the low probability of their surviving slower and longer transits, the 
chance of a species being introduced following any single translocation event is 
low. Hence, we used relatively long time steps (yearly) and generalized human 
movement models fitted to a variety of data sources to understand the spatial 
spread patterns of Ae. aegypti and Ae. albopictus.

We incorporated three distinct human movement models that act at different 
scales, since we were uncertain a priori which type of human movement would  
be most associated with mosquito spread. We considered the following models:  
(1) a gravity model; (2) a radiation model; (3) an adjacency network model; and 
(4) untransformed great-circle distance. Each of these models has been shown to 
be useful depending on the local context to infer regular daily commuting patterns, 
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longer-term movements and as general descriptions of human mobility24,64,65. First, 

the gravity model assumes that fluxes between two areas i and j are =
α β

γT k
N N

di,j
i j

i,j
,  

where N represents the human population size and d is the great circle distance 
between two locations, and k, α, β and γ are parameters to be fit66,67. The gravity 
model emphasizes the attractive power of large population centres. Second, the 
radiation model assumes fluxes to be =

+ + +
T Ti
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N s N N si,j ( )( )
i j

i i ji,j i,j
, where Ti is the 

number of individuals leaving area i and si,j is the total population in the circle 
centred at i with radius di,j excluding the population of the two areas i and j. The 
radiation model considers not only distance and population sizes at the origin and 
destination but also the cumulative population at a lesser distance from the origin 
than the destination24. Consequently, this model considers not only the origin and 
destination but also the landscape of ‘intervening opportunities’ between them. 
Third, adjacency networks encode the number of district borders an individual 
would need to cross to move from one district to another. Thus, this metric  
reflects the neighbourhood effect. Finally, we computed the great-circle  
distance between each pair of locations and used that as a metric of mobility  
in and of itself32,68.

For each second administrative unit (county/municipality) in the world, we 
determined the total human population size using gridded population estimates 
and calculated the great-circle distance between the centroids of each pair of 
districts within each continent69. Gravity and radiation model parameters were 
fitted using maximum likelihood methods to the empirical data described above 
using the movement R package53. National adjacency networks were computed 
using administrative boundary data from the GADM dataset (http://www.
gadm.org). To account for neighbourhood effects of spread and for the potential 
importance of within-country and between-country movements, we constructed 
adjacency matrices that were disaggregated into three binary connectivity  
matrices with connectivity degrees of one (that is, districts share a border),  
two (that is, districts share a common neighbour) and three (that is, more than  
two degrees away).

Mosquito spread modelling. Let xi(t) be the Aedes population status of district i at 
time t (that is, a binary variable takes the value 1 if there were Aedes mosquitoes 
that time, and 0 otherwise). Given the nature of the dataset collected, we assumed 
that all data points represented detection of established populations and thus 
assumed continuous presence of the species for the first and last reported 
occurrences. We used a standard logistic model to characterize the probability that 
some district j will become occupied at time t:

∑β β= ∣ − = = +
=

P x t x t Ylog it( ( ( ) 1 ( 1) 0))j j
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n
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0
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where Y k
j,t
( ) corresponds to the value of explanatory variable k in district j at time t. 

Explanatory variables included in this analysis were the predicted vector habitat 
suitability (that is, suitability for establishment of an introduced vector; see 
“Description of speed of dispersal” section) and connectivity between infested 
and non-infested districts (that is, probability of introduction of a vector). 
Separate metrics of connectivity were defined for each human movement model 
(see “Mosquito environmental niche modelling” section). From each human 
movement model, a connectivity matrix A k

ij
( ) was calculated for each location i 

and j. A corresponding covariate for the occupation model was then computed to 
represent the global force of importation, exerted from all other infested districts to 
j: = ∑ −Y A x t( 1)k

i
k

ij,t
( )

ij
( ) .

These models were re-fit in each successive year separately for the North 
American and European datasets, and for each vector species, using all available 
data up to that year. Model selection was done through backward selection using 
Akaike information criterion70. The fitted model was then evaluated prospectively 
over the next year by comparing predicted presence or absence with observations, 
thereby allowing us to evaluate and validate model performance over time. For 
model evaluation, we considered all locations (that is, 3,134 counties in the United 
States, 1,587 NUTS in Europe). This model evaluation was used to identify the best 
explanatory variables to include in the Aedes spread model. Model evaluation was 
performed using receiver operating characteristic (ROC) curves (Supplementary 
Fig. 7), and model accuracy was characterized by comparing the predicted 
probabilities of first detection compared with the response (Supplementary Fig. 6). 
We calculated the probability of first detection pw predicted by the model for each 
district-year that had not yet reported mosquitoes. We then partitioned district-
years into eight groups, with predicted probabilities in the range of 0–1%, 1–5%, 
5–10%, 10–15%, 15–20%, 20–25%, 25–35% and 35–100%. For each group, we 
calculated the mean predicted probability and compared it with the proportion 
of district-years in the group in which range expansion was observed. Our 
model assumes that each mosquito species will persist in an area once detected, 
while there are some examples of incursions apparently having been successfully 
eradicated or died out. It is possible that this assumption could result in inflated 
predictions of the rate of spread due to an overestimated number of source 
populations for each potential invasion event. However, it should be noted that 
this overestimate of the number of source populations would also be present in 

the training data, and would be at least partially absorbed into estimates of the 
probabilities of importation. Insufficient data were available to test or account 
for this potential bias, but based on additional experiments, we do not anticipate 
our estimates to greatly overpredict Aedes presence (see “Sensitivity analyses and 
sampling bias” section).

Cross-validation. To test whether the spread between countries is different from the 
spread within countries, we used the multi-country dataset from Ae. albopictus in 
Europe and varied the relative frequency of within- and between-country  
mobility by decreasing movement between countries by 20%, 50% and 70%.  
The results were then compared with a baseline, in which predicted within-country 
movement is the same as between-country movement (Supplementary Fig. 11). We 
also performed sensitivity analyses to evaluate how a model including  
human movements compares to single variable models that have objective 
measurements such as great-circle distance and adjacency. A model that 
includes human movements only slightly increased the predictive performance 
(Supplementary Fig. 12).

Sensitivity analyses and sampling bias. Surveillance efforts to detect Ae. aegypti 
and Ae. albopictus may vary in time and space due to gradual progressive 
improvements as a result of technology trapping technology, general expertise or 
in response to specific events. The following three types of changes in surveillance 
could bias the estimates of our spread model: (1) spatial expansion of surveillance 
system coverage to new areas; (2) intensification of sampling effort within areas 
where the surveillance system already operates; and (3) changes in sampling 
methods within areas where the surveillance system already operates that make 
it more or less likely to detect either Ae. aegypti or Ae. albopictus. To address each 
of these, we completed sensitivity analyses to understand how possible changes in 
surveillance may affect the inference about spread in the future.

Expansions of the surveillance system can be definitively distinguished from 
true known expansions of the vectors by comparing the state transitions of areas 
in longitudinal datasets, such as our Ae. albopictus dataset in Europe between 
the years of 2013 and 2017. Areas that first report absence of the species (often 
for multiple years) and later report presence are as close to a clear example 
of introduction as possible and give a reasonable estimate of the arrival date. 
Conversely, if an area’s first report is presence of the species, the species’ arrival 
date may have been estimated later than it truly occurred.

First, the existence of such longitudinal records in the Ae. albopictus database 
in Europe provides strong evidence to indicate that the distribution of the 
species is expanding. However, to test whether expanding surveillance efforts is 
a contributing factor to the observed rate of spread, we compared our original 
model fit to the full Ae. albopictus in Europe dataset, as used in our main analysis 
(model 1), with a model fit only to the data points that have strong evidence for 
a specific introduction date (that is, reported absence before presence; model 2). 
We tabulated data from Ae. albopictus in Europe where information was available 
regarding whether there was ongoing surveillance before the reporting of the species 
(transition from absence to presence). Such data were available for 179 out of 600 
observations between 2013 and 2018, a time period where 400 new regions reported 
the presence of the species, thus making our subsample about 50% of all new 
invasions. This dataset was available at higher spatial resolution than for the full Ae. 
albopictus dataset for Europe. A total of 75% of these records were from locations of 
most recent spread in France and Germany. Finally, as model 2 was fit to data from 
a narrower date range, we also considered a third model (model 3), which was fit 
to both occurrence and longitudinal data but only from the more recent date range 
(Supplementary Table 3). If expansion of surveillance efforts is a contributing factor 
to the observed rate of spread in the data, then we would expect model 2 to predict a 
significantly lower rate of spread than models 1 or 3 (our null hypothesis).

Each of these models were fit to the above datasets, then used to simulate  
Ae. albopictus spread from a common baseline (based on occurrence and 
longitudinal data at the end of 2012) for 6 years between 2013 and 2018 as 
described previously. The predicted total number of new districts infested during 
this period was calculated and is shown in Supplementary Table 4. Note that 
comparison of goodness of fit metrics for these models was not possible since the 
models were fit to different datasets.

Contrary to the expectation that more precise dates of invasion would lead to 
conclusions of slower rates of spread, this sensitivity exercise found that restricting 
the model to just areas where the date of introduction is known significantly 
increases the predicted rate of spread. Thus, this exercise rejects our above null 
hypothesis. This effect was also independent of the time period of the fitting data 
(similar results were obtained for models 1 and 3). These results suggest that it is 
more likely that true spread of Ae. albopictus is outpacing expansion of mosquito 
surveillance, and if longitudinal surveillance was in place everywhere, the observed 
rates of spread would be greater.

We therefore believe that the currently implemented model is a conservative 
estimate of the spread of these species and it is not highly affected by changes in 
spatial coverage of surveillance systems. Moreover, it provides the most robust 
estimates of spread over these time periods given the available data. Given the 
limited number of years of data available to fit model 2, we believe that model 1 
provides the most reliable estimates of future spread.
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Intensification in sampling effort and technological advancements in collection 
methods may affect the probability of detection of a species earlier in their invasion 
process compared with today. Here, we tested both hypotheses by including 
different terms in our spread model regression and compared such models to the 
null of no changes in surveillance intensity over time (as currently implemented in 
our main analysis). To represent increases or decreases in surveillance over time, 
we included the spline-smoothed year of detection as a variable in the regression 
analysis. To represent step changes in surveillance efforts in response to specific 
events, we included a factor variable; either before the 2003 peak in West Nile 
virus cases in the United States or after 2003 (only for models in the United States). 
Internal cross-validation was then used to compare the predictive performance 
of these three models with evaluation on 3-year-lookahead holdout sets, subject 
to a minimum of 10 consecutive years of data to fit the models. Model predictive 
performance was then compared using deviance from observed values in the 
holdout set.

This process showed that for all species in all continents, the inclusion of a temporal 
(Year) term reduced predictive accuracy (increased deviance). This was the case for 
both gradual change over time (s(Year)) and for breakpoint changes in response to 
specific events (Year > 2003). As a result, we conclude that there is no evidence for 
temporal changes in sampling effort in any of the datasets concerned; therefore, we did 
not include such terms in our final predictions (Supplementary Table 5).

Finally, there is a possibility that changes in general vector surveillance 
strategies could have led to changes that affected the probability of detection of 
one species more than the other. Such differential biases could undermine our 
interspecies spread rate comparison. One key period of concern is around the 
2003 West Nile virus outbreak in the United States, where vector surveillance may 
have prioritized trapping in more rural environments to optimize detection of 
various Culex species. Such a focus on rural environments may have led to relative 
increases in sampling intensity of Ae. albopictus and relative reductions in sampling 
intensities for Ae. aegypti.

To test this hypothesis, we followed a similar approach to the above analysis, 
whereby covariates for ‘before’ and ‘after’ the 2003 West Nile virus outbreak were 
included in the US spread model for each species. If the above hypothesis is true, 
such terms should have larger after values than before values in the Ae. albopictus 
model and vice versa in the Ae. aegypti model. Moreover, the terms should improve 
model prediction accuracy.

The best fits from the Ae. aegypti and Ae. albopictus spread models in the  
United States showed that detection of Ae. aegypti marginally increased relative to 
Ae. albopictus (positive model coefficients for post-2003 term in Ae. aegypti, negative 
in Ae. albopictus) (Supplementary Table 6). However, as previously stated, inclusion 
of such changes in surveillance quality over time reduced the model predictive 
performance (increase in deviance for both species) and therefore may not provide  
a better time period to mirror the spread of the species in the United States.

Classifying the ranges of each mosquito species and incorporating uncertainty. 
Current reported distributions of Ae. aegypti and Ae. albopictus are unlikely to be 
fully representative of their actual distributions because of logistical and financial 
constraints on vector surveillance39. Therefore, we used the following method to 
estimate the current-day global distribution (realized niche) of each mosquito 
species by comparing environmental suitability maps with occurrence data. We 
extracted the predicted environmental suitability value at each of the locations 
where the mosquito species has been reported, and the value of environmental 
suitability that encompassed 90% of these reported locations was chosen as the 
range threshold. Every value above or equal to this threshold was defined as within 
the range of the mosquito species (Supplementary Fig. 13). This approach assumes 
that the 10% of occurrences outside the predicted range represent temporary 
introductions that do not persist longer than 1 year and are not representative of 
the long-term distribution of the species. As there is uncertainty regarding what 
proportion of the data are representative of these transient identifications (given 
that the majority of the data are cross-sectional not longitudinal), we undertook 
a sensitivity analysis that varied this threshold from 85% to 95%, thereby creating 
96 different possible range maps that represent different realizations of the current 
distribution of each species. In doing so, we captured locations that have the 
conditions for mosquito presence and where there is potential for onward spread. 
We did not include international shipping as a contributor to infrequent long-
distance importation events between continents since both species are already well 
established on each continent; therefore, new occurrences are more likely to be 
driven by intracontinental importation pressure.

Future projections. Projecting environmental and socioeconomic covariates. We 
used 17 GCMs to estimate 30 arcsec images for monthly mean climate data. 
Supplementary Table 7 provides the designation, origin, references and number of 
replicate runs for each model. The procedures are described in detail in MarkSim 
documentation65. For each GCM, the baseline monthly climate was derived 
from the historical runs for temperatures and rainfall, the monthly means were 
calculated for each GCM for the years 2000 to 2095, and the difference ‘delta’ for 
each month was calculated by subtracting the specific GCM baseline. The delta 
values were interpolated from the native GCM pixel (Supplementary Table 7) to 
a one degree by one degree pixel for the globe. The data were pattern scaled to 

WorldClim 1.0364 for each one degree pixel, RCP and month. For each variant, 
a fourth-order polynomial regression was fitted over the 96 years of data and 
through the origin at 1985 (1985 being the mean midpoint of the data used  
in the WorldClim construction) to calculate one output per model per  
year per scenario.

Humidity data were estimated directly at the 30 arcsec level from dewpoint 
calculated using a previously described tabular method71 and the mean 
temperature. To fully propagate the variation between the climate models through 
our predictions, we used the outputs of 17 GCM for all 3 years and 3 scenarios.

Global temperature estimates were converted into temperature suitability 
for mosquito population persistence (separate metrics for each vector species), 
hereafter referred to as temperature suitability, using previously described 
temperature-based mathematical models44,46,47. These show the effects of diurnal 
and seasonal changes in temperatures on the generation time of the mosquito and 
its resultant effects on the persistence of a population.

As a highly anthropophilic mosquito species, the future distribution of 
the Aedes is likely to depend critically on both environmental and human 
socioeconomic factors that modify the availability of its habitat8. To incorporate 
these features, we also modelled the continued process of global urbanization until 
2080 using a probabilistic machine learning algorithm based on a previous study50. 
Here, we used urban growth rates predicted by the United Nations as a predictor 
variable51 as well as a range of other covariates as previously described50.

Projecting future niches of Ae. aegypti and Ae. albopictus. Although niche shifts 
might occur over long time-periods, the future effects remain unclear for  
Ae. aegypti and Ae. albopictus since their expansion from their native range72. 
Therefore, we assume niche conservatism, implying that the mosquitoes tend 
to establish and survive under similar environmental conditions in native and 
invaded ranges in the future4,73,74.

Our final aim was to produce 18 maps predicting Ae. aegypti and Ae. albopictus 
habitat suitability in the years 2020, 2050 and 2080 under three different emissions 
scenarios (RCPs). Each of these 18 maps were composed of 100 ensemble 
predictions that randomly sampled (with replacement) the following aspects  
of the analysis:

 1. The fitted Aedes BRT model (from a choice of 100 BRT models fitted to  
2015 data).

 2. The predicted temperature suitability for Aedes survival (from a choice of  
17 GCMs).

 3. The predicted minimum precipitation (from a choice of 17 GCMs).
 4. The predicted relative humidity (from a choice of 17 GCMs).
 5. The predicted maximum precipitation (from a choice of 17 GCMs).
 6. The predicted geographical expansion via land from the spread models (see 

“Projecting mosquito spread” section).

This approach sought to fully propagate the uncertainty in the climate, Aedes 
temperature suitability and Aedes models through to the final prediction. These 
100 predictions were then summarized by mean and 95% credible intervals to give 
the final prediction for each year RCP combination. Uncertainties are shown in all 
maps along the x axes.

Our baseline map modelling is different from previously published maps in 
that it uses only projectable environmental and sociodemographic variables and 
does not use the enhanced vegetation index, as this index is a direct empirical 
measure of the Earth’s current greenness4. To minimize potential reduction in the 
predictive ability of the model by omitting this covariate, we included precipitation 
and relative humidity as predictors for suitability for green vegetation growth in 
both the present day and future models.

Projecting mosquito spread. To derive yearly model-based estimates of the possible 
expansion of both species by 2080, we forward-simulated the geographical spread 
model based on the equation in the “Mosquito spread modelling” section. To 
account for the spatiotemporal dependence in first detection probabilities (each 
district’s probability is a function of every other district that was infested the 
year before), we ran 1,000 simulations forward in time. Within each simulation, 
we estimated the probability of infestation to each district that had yet to detect 
the species. We then drew a Bernoulli random variable with that probability of 1 
(that is, invasion) and imputed those results for each potential detection. Using 
these imputed invasions as well as all districts that had previously been infested, 
we repeated the estimation of range expansion for the next year. This process was 
repeated up to the desired forecast horizon. This represents a single simulation. It is 
important to note that we did not allow for the situation where an already infested 
district will ‘lose’ its infection status (that is, if xi(t − 1) = 1 for district i, we force 
xi(t) = 1). We then combined the results of the 1,000 simulations to identify which 
districts were most likely to have a positive species presence at any point.

Calculating population at risk and area expansion. To classify areas as at risk or 
not at risk of Ae. aegypti and Ae. albopictus expansion, a threshold was defined for 
the continuous Aedes suitability maps by the value that maximized sensitivity and 
specificity when classifying the occurrence and background data using the 2015 
map. This value was found to be 0.47 and 0.51 for Ae. aegypti and Ae. albopictus, 
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respectively. Any pixel with a predicted suitability value above that was considered at 
risk, and the same threshold was applied to each time point and scenario to calculate 
the population and area at risk in each global region. The final maps for 2020, 2050 
and 2080 were then overlaid with contemporary estimates of human populations 
at 5-km resolution and extracted the relevant population at risk was estimated 
using the raster package in R. We paired the climatic scenarios based on shared 
socioeconomic pathways (SSPs) that were defined previously75. They represent 
reference pathways that describe plausible alternative trends in the evolution of 
society and ecosystems over a century, in the absence of climate change or climate 
policies. SSPs are predicated on possible outcomes that would make it more or less 
difficult to respond to climate change challenges. Each SSP consists of quantified 
population and gross domestic product (GDP) trajectories, serving as the starting 
points for various organizations to model these factors and to provide projections 
for demographic and economic development variables. The Integrated Assessment 
Modelling Consortium made available certain peer-reviewed projections via 
the International Institute for Applied Systems Analysis (http://www.iiasa.ac.at), 
whereby the SSP storylines were converted into population and GDP projections for 
195 countries76 for every decade between the years 2010 and 2100.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available from https://datadryad.org/resource/doi:10.5061/dryad.47v3c
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Data collection Data collection and cleaning was performed in R, statistical software version 3.5.1 using standard R packages such as tidyverse: https://
www.tidyverse.org/ 

Data analysis Statistical analysis and plotting of results was performed in R, statistical software version 3.5.1 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data is available at: https://datadryad.org/resource/doi:10.5061/dryad.47v3c 
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We used longitudinal data on mosquito occurrence to model the patterns spread in the USA and Europe using a generalised additive 
model. We further conducted a global analysis of potential spread using environmental data and a machine learning algorithm 
(Boosted Regression Tree) to map the potential global distribution of Aedes aegypti and Ae. albopictus mosquitoes.  

Research sample We conducted our analysis for the medically important Ae. aegypti and Ae. albopictus mosquitoes.

Sampling strategy Sampling strategy is heterogenous and varies by country. Some of the samples are collected in response to nuisance reports by 
citizens. Others are collected routinely by efforts coordinated by the European Centers for Disease Control and Prevention (ECDC) or 
the US Government.

Data collection We used secondary data collected by entomologists in many parts of the world. High resolution data from Europe and the United 
States are longitudinal. Data from other locations in the world are used from a previous study: https://www.nature.com/articles/
sdata201535   

Timing and spatial scale Data were collected between 1980 - 2017 at highest spatial resolution possible (i.e., 5km by 5km pixel level or administrative unit 
level 2)

Data exclusions No data were excluded prior to analysis

Reproducibility We have uploaded all data and sample code to reproduce our findings.

Randomization No randomization was performed. We did perform randomization within our statistical analysis leaving out mosquito observations.

Blinding Not applicable

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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