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Abstract 

Background: Genetic polymorphisms in the human immune system modulate susceptibility to malaria. However, 
there is a paucity of data on the contribution of immunogenetic variants to malaria susceptibility in infants, who pre‑
sent differential biological features related to the immaturity of their adaptive immune system, the protective effect 
of maternal antibodies and fetal haemoglobin. This study investigated the association between genetic variation in 
innate immune response genes and malaria susceptibility during the first year of life in 656 infants from a birth cohort 
survey performed in Nanoro, Burkina Faso.

Methods: Seventeen single nucleotide polymorphisms (SNPs) in 11 genes of the immune system previously associ‑
ated with different malaria phenotypes were genotyped using TaqMan allelic hybridization assays in a Fluidigm plat‑
form. Plasmodium falciparum infection and clinical disease were documented by active and passive case detection. 
Case–control association analyses for both alleles and genotypes were carried out using univariate and multivariate 
logistic regression. For cytokines showing significant SNP associations in multivariate analyses, cord blood superna‑
tant concentrations were measured by quantitative suspension array technology (Luminex).

Results: Genetic variants in IL‑1β (rs1143634) and FcγRIIA/CD32 (rs1801274)—both in allelic, dominant and co‑dom‑
inant models—were significantly associated with protection from both P. falciparum infection and clinical malaria. 
Furthermore, heterozygote individuals with rs1801274 SNP in FcγRIIA/CD32 showed higher IL‑1RA levels compared to 
wild‑type homozygotes (P = 0.024), a cytokine whose production is promoted by the binding of IgG immune com‑
plexes to Fcγ receptors on effector immune cells.

Conclusions: These findings indicate that genetic polymorphisms in genes driving innate immune responses are 
associated to malaria susceptibility during the first year of life, possibly by modulating production of inflammatory 
mediators.
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Background
Malaria is a life-threatening infectious disease caused 
by Plasmodium protozoan parasites and transmitted 
by Anopheles mosquitoes. Despite global malaria con-
trol and elimination efforts, which reduced the number 
of malaria-related deaths by 50% since 2000, malaria 
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remains a major public health problem, particularly in 
pregnant women and children from sub-Saharan Africa 
[1, 2].

Individual risk for malaria infection and disease is com-
plex and multifactorial, and is influenced/modulated by 
host genetic background [3, 4]. Quantitative genetics 
have estimated that human genetic factors could explain 
25% of individual variation in susceptibility to clini-
cal malaria in Africa [5]. An example are the numerous 
studies that have demonstrated a prominent role of red 
blood cell (RBC) polymorphisms, such as haemoglobin-
inherited disorders (e.g. thalassaemia, sickle cell disease), 
erythrocyte membrane protein polymorphisms (e.g. 
ovalocytosis, spherocytosis, Duffy antigen) and eryth-
rocyte enzymatic disorders (e.g. glucose-6-phosphate 
dehydrogenase) in malaria susceptibility [6, 7]. On the 
other hand, there is increasing evidence that identifies 
polymorphisms in genes related to the immune system 
as important determinants in susceptibility to malaria 
infection and disease. Immuno-genetic variants that have 
been associated with diverse degrees of malaria suscep-
tibility include: (i) polymorphisms in the Human Leu-
cocyte Antigen (HLA), which may affect recognition of 
parasite antigens [8–10]; (ii) polymorphisms in cytokine 
related genes, which may affect protein levels and down-
stream functions, such as production of C-reactive pro-
tein and immunoglobulin (Ig) isotype switching [11–16]; 
(iii) polymorphism in toll-like receptors (TLRs), which 
may impair the ability of individuals to respond ade-
quately to TLR agonists [17–21]; and (iv) polymorphisms 
in IgG Fcγ receptors, which may affect IgG immune com-
plexes binding and the regulation of the IgG subclass 
production [22–26].

In Burkina Faso, genetic epidemiology has demon-
strated that the wild-type R131 allele (rs1801274) of the 
FcγRIIA (CD32) and tumour necrosis factor (TNF)-238G 
allele (rs361525) were associated with protection from 
clinical malaria and high parasitaemia, respectively, in 
infants and children until 10 years of age [27–29]. In con-
trast, in a family based-study, TNF mutations rs3093664 
and rs3093662 were associated with increased risk of 
parasitaemia and clinical malaria [27]. Overall, most 
of these studies have been conducted in children and 
adults, whereas the potential effect of immune genetic 
variants on infants, who are at great risk of malaria [30] 
and have particular immunologic characteristics (such as 
an immature adaptive immune system and the potential 
protective effect of maternal antibodies and fetal haemo-
globin [31–35]), has not been investigated.

Previous studies by our group in Burkina Faso 
described that malaria infections and disease during 
the first year of life is high and has a marked age and 
seasonal-dependency [30], that individual heterogeneity 

in the risk of malaria in this age group is strongly influ-
enced by in utero environment, with a profound effect 
of past placental malaria on fetal immune system [36]. 
The study hypothesis was that polymorphisms in genes 
driving Th1/Th2/innate immune response pathways may 
also affect the development of fetal innate immunity and 
thus, contribute to the heterogeneity in malaria suscep-
tibility observed during the first year of life [30, 37, 38]. 
To address this question, 17 single nucleotide polymor-
phisms (SNPs) in 11 genes of the innate immune system 
previously associated with malaria-related phenotypes 
in African populations (including cytokines, TLRs, Fcγ 
receptors and nitrogen oxide synthase 2, NOS2) [4, 14, 
39–42] were selected to investigated its association with 
malaria susceptibility in infants living in Nanoro (Burkina 
Faso), using a nested case–control study design.

Methods
Study setting
The study was conducted in the rural health district of 
Nanoro (Burkina Faso), located in the central-west region 
at 85 km from the capital Ouagadougou. Nanoro health 
district (NHD) has approximately 166,683 inhabitants 
and comprises 21 peripheral health centres. Malaria 
transmission is seasonal and hyperendemic with peaks 
between July and December and overlapping with the 
rainy season (June to November). Malaria burden in 
infants is high and strongly dependent on age and season 
[30]. Between 2014 and 2016, the incidence of clinical 
malaria was estimated at 1.03 cases per child-year dur-
ing the first year of life, whereas the age-specific preva-
lence of asymptomatic infections ranged from 17.7% at 
3 months of age to 31.3% at 12 months [30].

Study visits and participants
A birth-cohort study (n = 734) was nested within the 
COSMIC clinical trial (NCT01941264) to investigate fac-
tors that modulate the risk of malaria during the first year 
of life [30]. COSMIC was a cluster-randomized controlled 
trial investigating the protective effect of adding com-
munity-scheduled screening and treatment of malaria 
during pregnancy (CSST) to the standard intermittent 
preventive treatment with sulfadoxine–pyrimethamine 
(CSST/IPTp-SP, intervention arm) compared to IPTp-
SP alone (control arm) in Burkina Faso, Benin and The 
Gambia [43]. Infants from mothers participating into 
COSMIC trial in Burkina Faso were involved in the birth-
cohort study. Infants were followed up until 12  months 
of age following procedures that have been described in 
detail elsewhere [30, 44]. In brief, malaria infections were 
detected actively and passively. Active case detection of 
asymptomatic infections consisted of 4 cross-sectional 
surveys conducted at 3, 6, 9, and 12  months of age. At 
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each survey, blood films and blood spots on filter papers 
(Whatman 3MM, GE Healthcare Life Sciences) were 
collected for examination by light microscopy (LM) and 
quantitative real-time polymerase chain reaction (qPCR), 
respectively. For passive clinical case detection, mothers 
were encouraged to bring their offspring to the health 
centre if they displayed any signs of illness. Infants pre-
senting with fever (axillary temperature ≥ 37.5  °C) on 
examination or history of fever in the previous 24 h were 
screened for malaria infection using RDT (SD-Bioline 
Malaria Ag P.f, Standard Diagnostic, Korea) according 
to manufacturer’s instructions and, if positive, treated 
according to national guidelines. Malaria diagnosis was 
subsequently confirmed by LM on Giemsa stained blood 
films according to standard procedures [45] and qPCR 
(procedure see below). For the present study, available 
DNA samples from 694 unrelated singletons were used 
for SNPs typing.

Detection of P. falciparum infections by qPCR
Parasite and human genomic DNA were extracted from 
three punches (5  mm in diameter) of dried blood spots 
on filter papers with QIAamp 96 DNA blood kit (Qia-
gen, Germany) and eluted in 150µL of water, following 
the manufacturer’s recommendations. Five microliters 
of DNA were used as template for qPCR analysis tar-
geting P. falciparum var genes acidic terminal sequence 
(varATS, ≈59 copies per genome) in StepOne Plus ther-
mocycler (Applied Biosystems), as previously described 
[46]. The limit of detection of the varATS-qPCR was 0.1 
parasite/μL as described elsewhere [47]. Samples with Ct 
value > 39.7 were considered negative.

SNPs genotyping in fluidigm system
The SNPs selection for typing was performed based on 
existing published data. A SNP was included for analy-
sis if: (i) had been previously associated with a malaria-
related phenotype (malaria infection, clinical malaria, 
severe malaria, high parasites density), (ii) had an 
expected minor allele frequency (MAF) ≥ 5% in Afri-
can populations, and (iii) had a functionally tested and/
or validated TaqMan® SNPs genotyping assay. The final 
SNPs selected for analysis were: TLR1 (rs4833095), TLR4 
(rs4986790), TLR9 (rs5743836, rs352139 and rs352140), 
interleukin (IL)-4 (rs2243250), IL-10 (rs1800890 and 
rs1800896), IL-17F (rs4715291), IL-1β (rs1143634), 
TNF (rs1800629 and rs3093664), interferon-γ recep-
tor 1 (IFNR1, rs10065633 and rs10213701), nitrogen 
oxide synthase 2 (NOS2, rs2297518) and FcγRIIA/
CD32 (rs1801274). TaqMan® SNPs genotyping assays 
were obtained from Applied Biosystems, and genotyp-
ing assays performed in GT192.24 dynamic arrays using 
the BioMark® platform (Fluidigm) at the Department of 

Genomics of Common Disease, Imperial College (Lon-
don, UK). All samples underwent 16 cycles of specific 
target amplification (STA) in a total reaction volume of 
10µL. Eight control samples containing known com-
binations of mutations at selected loci were identified 
from the Gambian in Western Division (GWD) popula-
tion based on data from 1000 Genomes Project (http://
phase 3brow ser.1000g enome s.org/), and DNA obtained 
from Coriell Cell Repositories. Both GWD controls and 
duplicate samples were included in all dynamic arrays. 
PCR and image processing were carried out on the Bio-
Mark® HD080 system (version 4.1.2) to determine SNP 
genotypes from clusters in each assay. Plots generated by 
the Fluidigm analysis software were subsequently visu-
ally revised to check the cluster profile for each assay and 
how samples with different genotypes were separated. 
Allelic calls for all GWD controls were consistent across 
all runs, and all duplicate samples within each plate had 
identical allele calls. The genotyping success and the 
overall call rate was determined per SNP.

Haemoglobin genotyping
Haemoglobin genotypes were determined by high reso-
lution melting (HRM) analysis, adapting previously 
described methods [48]. Reactions were conducted in 
a LightCycler® 480 System (Roche) in the presence of 
LightCycler® 480 HRM- Dye (HRM Master 2X, Roche 
Diagnostics GmbH) in a reaction of 20µL. LightCycler® 
480 Gene Scanning Software (version 1.5) was used to 
analyse the HRM curves data and determine haemoglo-
bin genotypes. Controls with known haemoglobin geno-
types (rs 334 AA [HbAA], rs334 AT [HbAS], rs334 TT 
[HbSS], rs33930165 GA [HbAC]) were added to every 
plate.

IL‑1β and IL‑1RA cytokine levels in cord blood
Levels of IL-1β and IL-1RA by cord blood cells unstim-
ulated and stimulated with TLR7/8 agonist (a stimulant 
that demonstrated higher induction of cytokine produc-
tion than TLR3 and TLR9 agonists in the same cohort) 
were determined as described previously [36]. Briefly, 
fresh whole cord blood samples diluted 1:1 with RPMI 
1640 (1X, Gibco) were left unstimulated or stimulated 
with 10  µg/mL of imidazoquinoline (R848, TLR7/8 
ligand; InvivoGen, San Diego, USA). Supernatant was 
collected following incubation for 24  h at 37  °C in 5% 
 CO2, and then frozen at − 80 °C. IL-1β and IL-1RA were 
quantified with the fluorescent bead-based multiplex 
immunoassay (Human Cytokine Magnetic 30-Plex Panel 
kits, Novex®, Life Technologies™, USA) and analysed 
on a Luminex® 100/200™ instrument using Xponent 3.1 
software.

http://phase3browser.1000genomes.org/
http://phase3browser.1000genomes.org/
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Definitions and genetic association analysis
The association between polymorphisms in immune 
genes and (a) malaria infection or (b) clinical malaria 
was investigated using case–control analysis. For malaria 
infection analysis, cases were infants who had at least one 
P. falciparum infection during the first year of life, regard-
less of symptoms; controls were infants who remained 
uninfected during the first 12 months of life. Uninfected 
infants who did not complete the 12-month follow-up 
were excluded from the analysis.

Clinical malaria cases were infants who experienced 
at least one clinical episode (presence of P. falciparum 
of any density by qPCR and an axillary temperature 
≥ 37.5  °C or history of fever within the past 24 h) from 
birth to 12 months of age, whereas controls were who did 
not develop a clinical episode, irrespective of infection 
status.

Data was analysed using R statistical package version 
3.2.3 [49]. Baseline characteristics of study participants 
was compared between case and control groups. Con-
tinuous data with normal distribution and categorical 
variables was analysed using Student t-test and Pearson’s 
chi-square tests, respectively. Hardy–Weinberg Equilib-
rium (HWE) was examined using Pearson’s chi-square 
statistical test. SNPs were excluded from the analysis if 
they had more or equal 10% of genotype calls missing or 
a significant genotypic deviation from HWE (P < 0.001). 
Case–control association analyses for both SNPs alleles 
and genotypes were assessed using logistic regression in 
co-dominant, dominant, over-dominant and recessive 
models [50]. Maternal age, gravidity, infant birth season, 
sex, low birth weight (LBW), prenatal malaria exposure 
(defined as maternal peripheral and placental infections 
and considered as main risk factor regardless of the pre-
ventive treatment and SP uptake received during preg-
nancy [36]), ethnicity and haemoglobin variants were 
evaluated as potential confounding factors in multivari-
ate analyses. The crude concentrations of IL-1β and IL-
1RA in un-stimulated and TLR7/8-stimulated samples 
were log transformed and compared using analysis of 
variance (ANOVA) and independent sample t-test. Ben-
jamini–Hochberg method was applied to adjust P-values 
for multiple comparisons [51]. A P-value < 0.05 was con-
sidered statistically significant.

Results
Characteristics of cases and controls groups
Of the 694 infants whose DNA samples were genotyped, 
656 (94.5%) completed the 12  months follow-up and 
were included in the analysis. Overall, 80.3% (527/656) 
of infants experienced at least one P. falciparum infection 
during the first year of life, out of which 78% (411/527) 
developed at least one clinical episode. The baseline 

characteristics of the study participants (cases and con-
trols) are presented in Table 1. There were no significant 
differences in maternal characteristics between cases and 
controls for both malaria infections and clinical episodes. 
The proportion of infants in different categories of prena-
tal malaria exposure was significantly different between 
cases and controls for both clinical cases and malaria 
infection (P = 0.021 and P < 0.001, respectively). In addi-
tion, the proportion of infants born during the malaria 
high-transmission season was significantly higher among 
clinical malaria controls than cases (P = 0.031). In con-
trast, the proportion of infants born with LBW was 
significantly higher among clinical malaria cases than 
controls (P = 0.015). There was an ethnic homogeneity 
among the study participants with most infants (90%) 
belonging to the Mossi ethnic group. The proportion of 
children whose mother received 3 or more SP doses dur-
ing pregnancy was significantly higher among controls 
than cases for both malaria infection and clinical episode 
(P = 0.006 and P = 0.034, respectively). There were no sig-
nificant differences in haemoglobin genotypes between 
cases and controls. All the participants were breast feed 
during the first year of life.

Association between immune genetic variants and malaria 
infection
Genotyping success per SNP was > 94% for all SNPs 
selected with the exception of TNF rs3093662 SNP 
(59.7%), which had > 10% missing data and was there-
fore removed from the analysis (Table 2). Call rates for all 
SNPs were > 96% for most assays. TLR9 rs3521140 was 
removed as it deviated from HWE (P < 0.001). Among the 
15 SNPs included in the final analysis, SNPs rs4833095 
(TLR1), rs3093664 (TNF-α) and rs2297518 (NOS2A) 
showed a minor allele frequency below 10% (Table 2).

A first analysis investigated the association between 
immune genetic variants (allelic and genotypic) and P. 
falciparum infections as detected by qPCR (Table 3).

Both univariate and multivariate allele-based analy-
sis showed that infants carrying the mutant allele A in 
IL-1β (rs1143634, adjusted odds ratio (AOR) = 0.52, 
95%CI .34–0.80, P = 0.003) and the mutant allele A 
in FcγRIIA/CD32 (rs1801274, AOR = 0.51, 95%CI 
0.37–0.70, P < 0.001) were more likely to be protected 
against malaria infection than infants with the wild 
type G allele. The genotypic analysis (univariate and 
multivariate) confirmed that polymorphisms in IL-1β 
(dominant model: AG/AA vs GG, AOR = 0.54, 95%CI 
0.33–0.88, P = 0.014) and iFcγRIIA/CD32 (dominant 
model: GA/AA vs GG, AOR = 0.44, 95%CI 0.28–0.70, 
P < 0.001) were significantly associated with protec-
tion from malaria infection. Furthermore, protection 
was enhanced among homozygotes individuals in 
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co-dominant models when comparing the genotypes 
carrying the mutant allele versus the wild-type geno-
type for both IL-1β (AA vs GG, AOR = 0.16, 95%CI 
0.04–0.74, P = 0.019 and AG vs GG, AOR = 0.57, 95%CI 
0.35–0.93, P = 0.026) and FcγRIIA/CD32 (AA vs GG, 
AOR = 0.28, 95%CI 0.14–0.55, P < 0.001 and GA vs GG, 
AOR = 0.50, 95%CI 0.31–0.81, P = 0.004) SNPs (Addi-
tional file 1: Table S1). On the contrary, the presence of 
IL-10 rs1800896 tended to increase the risk of malaria 

infection in over-dominant model (CT vs TT/CC, 
AOR = 1.60, 95%CI 0.99–2.61, P = 0.057).

Association between immune genetic variants and clinical 
malaria
The allelic analysis showed that carriage of the mutant 
allele A in IL-1β rs1143634 SNP (AOR: 0.66, 95%CI 
0.46–0.97; P = 0.032) and mutated allele A in FcγRIIA/
CD32 rs1801274 SNP (AOR: 0.68; 95%CI 0.52–0.89; 

Table 1 Characteristics of study participants

PME prenatal malaria exposure, PM Placental malaria, MPI maternal peripheral infection during pregnancy, IPTp-SP Intermittent preventive treatment during 
pregnancy with sulfadoxine–pyrimethamine, CSST/IPTp-SP community based-scheduled screening and treatment of malaria in addition to the standard IPTp-SP
a ITN usage the last night before delivery
b Haemoglobin genotyping was successful for 644 (98.2%) with a total of 516 infants who experienced P. falciparum infection while 403 developed a clinical case

Variables Malaria infection Clinical malaria

Cases (527) Controls (129) P‑value Cases (N = 411) Controls (N = 245) P‑value

Maternal characteristics

 Age (years, mean ± SD) 26.5 ± 6.3 26.2 ± 6.2 0.641 26.4 ± 6.2 26.4 ± 6.3 0.988

Gravidity (no. (%)) 0.176 0.250

  Primigravida 88 (16.7) 25 (19.4) 69 (16.8) 44 (18.0)

  Secundigravida 92 (17.5) 14 (10.8) 74 (18.0) 32 (13.0)

  Multigravida 347 (65.8) 90 (69.8) 268 (65.2) 169 (69.0)

 MiP preventive strategy

  Standard IPTp‑SP 262 (49.7) 70 (54.3) 0.355 212 (51.6) 120 (49.0) 0.520

  CSST/IPTp‑SP 265 (50.3) 59 (45.7) 199 (48.4) 125 (51.0)

 SP doses uptake

  < 3 doses 283 (53.7) 52 (40.3) 0.006 223 (54.3) 112 (45.7) 0.034

  ≥ 3 doses 244 (46.3) 77 (59.7) 188 (45.7) 133 (54.3)

 ITN  usagea 413 (78.4) 108 (83.7) 0.152 326 (79.3) 195 (79.6) 0.934

 Infant’s characteristics

Birth season [no. in malaria high‑
transmission season (%)]

323 (61.3) 84 (65.1) 0.422 242 (58.9) 165 (67.4) 0.031

 Gender [no. females (%)] 272 (51.6) 64 (49.6) 0.684 201 (48.9) 135 (55.1) 0.125

 LBW (< 2500 g) (no. (%)) 45 (8.5) 6 (4.6) 0.140 40 (9.7) 11 (4.5) 0.015

 PME (no. (%))  < 0.001 0.021

  Active PM 113 (23.7) 16 (13.8) 87 (23.1) 42 (19.4)

  Past PM 223 (46.8) 43 (37.0) 177 (47.1) 89 (41.0)

  MPI 53 (11.1) 19 (16.4) 47 (12.5) 25 (11.5)

  Non‑exposed 88 (18.4) 38 (32.8) 65 (17.3) 61 (28.1)

 Ethnicity [no. (%)] 0.443 0.410

  Mossi 471 (89.4) 122 (94.6) 366 (89.1) 227 (92.7)

  Gourounsi 52 (9.9) 6 (4.6) 42 (10.2) 16 (6.5)

  Fulani 3 (0.6) 1 (0.8) 2 (0.5) 2 (0.8)

Samo 1 (0.2) 0 (0.0) 1 (0.2) 0 (0.0)

 Haemoglobinb

  AA 293 (56.8) 75 (58.6) 0.960 235 (58.3) 133 (55.2) 0.428

  AC 137 (26.5) 34 (26.6) 100 (24.8) 71 (29.5)

  AS 67 (13.0) 16 (12.5) 53 (13.2) 30 (12.4)

  SC 12 (2.3) 2 (1.5) 8 (2.0) 6 (2.5)

  SS 7 (1.4) 1 (0.8) 7 (1.7) 1 (0.4)
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P = 0.005) were associated with protection from clini-
cal malaria. The same associations were observed in 
the genotype-based analysis showing that individuals 
with AA genotype in IL-1β rs1143634 SNP (recessive 
model: AA vs AG/GG, AOR = 0.14, 95%CI 0.03–0.78, 
P = 0.024) and those with GA/AA genotypes in FcγRIIA/
CD32 rs1801274 SNP (dominant model: GA/AA vs GG, 
AOR = 0.58, 95%CI 0.41–0.84, P = 0.003) were more 
likely to be protected against clinical malaria (Table  4). 
In the co-dominant model, the risk of clinical malaria 
was only reduced among homozygote AA carriers of 

IL-1β rs1143634 SNP (AA vs GG, AOR = 0.14, 95%CI 
0.03–0.75, P = 0.022), while both AA mutant homozy-
gote and GA heterozygote individuals for FcγRIIA/
CD32 rs1801274 SNP were significantly protected (AA 
vs GG, AOR = 0.48, 95%CI 0.26–0.87, P = 0.017 and GA 
vs GG, AOR = 0.61, 95%CI 0.42–0.89, P = 0.010) (Addi-
tional file  2: Table  S2). No significant association was 
found between the selected SNPs with increased risk of 
clinical malaria during the first year of life. However, a 
marginal increase risk was observed among infants car-
rying the TA genotype for rs1800890 SNP in IL-10 locus 

Table 3 SNPs included in the analysis and association with malaria infection

Significant P values < 0.05 are indicated in italics
a Adjusted by mother’s age, gravidity, Birth season, baby’s sex, LBW, Prenatal malaria exposure, ethnicity, Haemoglobin variants
b Genotype-based analysis for dominant, over-dominant and recessive models. Models that showed lowest P values are shown

Gene SNPs Alleles or genotypes Model Univariate analysis Multivariate  analysisa

OR (95%CI) P AOR (95%CI) P

Allele‑based analysis

 TLR1 rs4833095 T vs C – 0.80 (0.51–1.24) 0.318 0.89 (0.54–1.47) 0.660

 TLR4 rs4986790 G vs A – 1.15 (0.70–1.88) 0.581 1.44 (0.82–2.53) 0.204

 TLR9 rs5743836 G vs A – 1.01 (0.76–1.32) 0.972 0.98 (0.72–1.33) 0.760

 TLR9 rs352139 T vs C – 1.13 (0.85–1.49) 0.384 1.22 (0.89–1.66) 0.219

 IL‑4 rs2243250 C vs T – 0.91 (0.66–1.27) 0.606 0.89 (0.63–1.27) 0.534

 IL‑10 rs1800896 C vs T – 1.07 (0.78–1.46) 0.664 1.07 (0.76–1.53) 0.685

 IL‑10 rs1800890 T vs A – 1.04 (0.73–1.46) 0.835 1.10 (0.75–1.61) 0.614

 IL‑17F rs4715291 T vs C – 1.23 (0.83–1.82) 0.305 1.11 (0.72–1.71) 0.629

 IL-1β rs1143634 A vs G – 0.58 (0.40–0.86) 0.006 0.52 (0.34–0.80) 0.003

 TNF‑α rs1800629 A vs G – 0.86 (0.59–1.26) 0.444 0.91 (0.60–1.38) 0.669

 TNF‑α rs3093664 G vs A – 0.88 (0.50–1.56) 0.663 0.93 (0.48–1.78) 0.826

 IFNR1 rs10213701 A vs T – 1.02 (0.77–1.35) 0.891 0.97 (0.71–1.34) 0.888

 IFNR1 rs10065633 C vs T – 1.12 (0.84–1.47) 0.407 1.20 (0.88–1.63) 0.238

 NOS2A rs2297518 A vs G – 1.32 (0.77–2.26) 0.306 1.28 (0.71–2.33) 0.408

 FcγRIIA/CD32 rs1801274 A vs G – 0.62 (0.47–0.82) < 0.001 0.51 (0.37–0.70) < 0.001

Genotype‑based  analysisb

 TLR1 rs4833095 TT vs TC/CC Recessive 0.60 (0.11–3.14) 0.423 0.57 (0.10–3.18) 0.521

 TLR4 rs4986790 GA/GG vs AA Dominant 1.11 (0.66–1.86) 0.828 1.43 (0.79–2.58) 0.237

 TLR9 rs5743836 GG vs GA/AA Recessive 0.87 (0.54–1.40) 0.565 0.95 (0.56–1.62) 0.861

 TLR9 rs352139 TT vs TC/CC Recessive 1.30 (0.79–2.14) 0.291 1.57 (0.89–2.77) 0.117

 IL‑4 rs2243250 TC vs TT/CC Over‑dominant 0.93 (0.62–1.40) 0.730 0.91 (0.58–1.43) 0.695

 IL‑10 rs1800896 CT vs TT/CC Over‑dominant 1.32 (0.86–2.02) 0.201 1.60 (0.99–2.61) 0.057

 IL‑10 rs1800890 TA vs TT/AA Over‑dominant 1.33 (0.86–2.07) 0.203 1.52 (0.93–2.48) 0.098

 IL‑17F rs4715291 TT vs TC/CC Recessive 1.15 (0.73–1.83) 0.537 1.28 (0.35–4.61) 0.710

 IL-1β rs1143634 AG/AA vs GG Dominant 0.58 (0.37–0.89) 0.013 0.52 (0.32–0.84) 0.007

 TNF‑α rs1800629 AA vs GA/GG Recessive 1.34 (0.29–6.13) 0.704 1.41 (0.28–7.10) 0.677

 TNF‑α rs3093664 GA vs GG/AA Over‑dominant 0.74 (0.41–1.35) 0.325 0.77 (0.39–1.52) 0.454

 IFNR1 rs10065633 TC vs CC/TT Over‑dominant 0.89 (0.61–1.32) 0.574 0.90 (0.58–1.37) 0.619

 IFNR1 rs10213701 TA vs AA/TT Over‑dominant 0.85 (0.58–1.25) 0.415 0.86 (0.56–1.32) 0.492

 NOS2A rs2297518 GA/AA vs GG Over‑dominant 1.32 (0.74–2.34) 0.342 1.30 (0.69–2.46) 0.421

FcγRIIA/CD32 rs1801274 GA/AA vs GG Dominant 0.52 (0.34–0.78) 0.001 0.45 (0.28–0.70) < 0.001
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(over-dominant model: TA vs TT/AA, AOR = 1.48, 
95%CI 0.99–2.19, P = 0.052) (Table 4).

Association between genetic polymorphisms and cytokine 
levels in cord blood
Next it was assessed whether polymorphisms in IL-1β 
(rs1143634) were associated with immune effector 
phenotypes. Therefore, IL-1β levels were quantified in 
a sub-group of infants) for whom un-stimulated and 

TLR7/8-stimulated cord blood samples were avail-
able (N = 313). Figure 1 shows that IL-1β levels did not 
differ across rs1143634 genotypic groups for both un-
stimulated and TLR-7/8-stimulated samples (P = 0.682 
and P = 0.707, respectively).

The association between FcγRIIA/CD32 rs1801274 
SNP and IL-1RA levels was also investigated, since bind-
ing of FcγRIIA/CD32 to immune complexes induces 
IL-1RA production [52, 53]). In this case, significant 
differences in IL-1RA levels across FcγRIIA/CD32 

Table 4 SNPs included in the analysis and association with clinical malaria

Significant P values < 0.05 are indicated in italics
a Adjusted by mother’s age, gravidity, birth season, baby’s gender, low birth weight, Prenatal malaria exposure, ethnicity, Haemoglobin variant
b Genotype-based analysis for dominant, over-dominant and recessive models. Models that showed lowest P values (P) are shown

Gene SNPs Alleles/genotypes Model Univariate analysis Multivariate  analysisa

OR (95%CI) P OR (95%CI) P

Allele‑based analysis

 TLR1 rs4833095 T vs C – 0.90 (0.62–1.33) 0.608 0.96 (0.63–1.46) 0.844

 TLR4 rs4986790 G vs A – 1.04 (0.70–1.54) 0.838 1.19 (0.76–1.87) 0.442

 TLR9 rs5743836 G vs A – 0.89 (0.71–1.12) 0.324 0.82 (0.64–1.06) 0.137

 TLR9 rs352139 T vs C – 1.13 (0.90–1.42) 0.296 1.09 (0.84–1.40) 0.524

 IL‑4 rs2243250 C vs T – 1.04 (0.79–1.36) 0.772 0.97 (0.72–1.31) 0.857

 IL‑10 rs1800896 C vs T – 1.05 (0.82–1.35) 0.676 1.00 (0.76–1.33) 0.982

 IL‑10 rs1800890 T vs A – 1.17 (0.88–1.56) 0.268 1.14 (0.83–1.56) 0.423

 IL‑17F rs4715291 T vs C – 1.12 (0.82–1.53) 0.462 0.98 (0.70–9.07) 0.918

 IL-1β rs1143634 A vs G – 0.68 (0.48–0.95) 0.025 0.66 (0.46–0.97) 0.032

 TNF‑α rs1800629 A vs G – 0.97 (0.70–1.33) 0.843 1.08 (0.76–1.53) 0.682

 TNF‑α rs3093664 G vs A – 0.82 (0.51–1.32) 0.406 0.73 (0.43–1.25) 0.259

 IFNR1 rs10213701 A vs T – 1.11 (0.88–1.41) 0.361 1.15 (0.89–1.50) 0.283

 IFNR1 rs10065633 C vs T – 1.02 (0.82–0.82) 0.843 1.06 (0.82–1.36) 0.644

 NOS2A rs2297518 A vs G – 1.09 (0.72–1.65) 0.682 1.32 (0.83–2.10) 0.239

 FcγRIIA/CD32 rs1801274 A vs G – 0.71 (0.56–0.90) 0.005 0.68 (0.52–0.89) 0.005

Genotype‑based  analysisb

 TLR1 rs4833095 TT vs TC/CC Recessive 0.44 (0.10–1.99) 0.286 0.50 (0.11–2.36) 0.388

 TLR4 rs4986790 GA/GG vs AA Dominant 1.02 (0.67–1.56) 0.910 1.28 (0.79–2.06) 0.313

 TLR9 rs5743836 GG vs GA/AA Recessive 0.81 (0.54–1.20) 0.295 0.77 (0.50–1.20) 0.250

 TLR9 rs352139 TT vs TC/CC Recessive 1.33 (0.90–1.98) 0.155 1.33 (0.86–2.06) 0.197

 IL‑4 rs2243250 TC vs TT/CC Over‑dominant 0.96 (0.68–1.35) 0.818 0.83 (0.57–1.20) 0.326

 IL‑10 rs1800896 CT vs TT/CC Over‑dominant 1.07 (0.76–1.50) 0.690 1.29 (0.88–1.88) 0.185

 IL‑10 rs1800890 TA vs TT/AA Over‑dominant 1.41 (0.99–2.01) 0.059 1.48 (0.99–2.19) 0.052

 IL‑17F rs4715291 TT vs TC/CC Recessive 1.29 (0.52–3.02) 0.583 0.92 (0.35–2.46) 0.882

 IL-1β rs1143634 AA vs AG/GG Recessive 0.29 (0.07–1.18) 0.086 0.14 (0.03–0.78) 0.024

 TNF‑α rs1800629 AA vs GA/GG Recessive 1.34 (0.41–4.41) 0.626 2.15 (0.54–8.59) 0.279

 TNF‑α rs3093664 GA vs GG/AA Over‑dominant 0.85 (0.50–1.42) 0.529 0.70 (0.40–1.25) 0.230

 IFNR1 rs10065633 TC vs CC/TT Over‑dominant 1.03 (0.75–1.41) 0.869 1.14 (0.80–1.61) 0.476

 IFNR1 rs10213701 TA/AA vs TT Dominant 1.13 (0.82–1.55) 0.468 1.20 (0.84–1.70) 0.331

 NOS2A rs2297518 GA/AA vs GG Dominant 1.11 (0.71–1.73) 0.656 1.30 (0.79–2.14) 0.307

 FcγRIIA/CD32 rs1801274 GA/AA vs GG Dominant 0.65 (0.47–0.89) 0.008 0.58 (0.41–0.84) 0.003
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rs1801274 genotypes upon TLR7/8 stimulation of cord 
blood samples were observed (P = 0.016, Fig.  2b). Indi-
viduals with GA genotype had higher levels of IL-1RA 
compared with that of infants carrying the wild-type 
GG genotype (P = 0.024), while no significant difference 
was observed for individuals carrying the AA genotype 
(P = 0.487). Differences of IL-1RA levels between geno-
types in un-stimulated cord blood samples was not sig-
nificant (P = 0.619, Fig. 2a).

Discussion
This study investigated associations between genetic 
variants in immune genes and malaria susceptibility in 
infants in Burkina Faso. The study focused on cytokine, 
TLR, FcγRIIA/CD32 and NOS2A genes given their key 
role in innate immune responses against pathogens in 
early infancy. SNPs in FcγRIIA/CD32 (rs1801274) and 
in IL-1β (rs1143634) were significantly associated with 
protection from both malaria infection and clinical dis-
ease during the first year of life and FcγRIIA/CD32 SNP 
rs1801274 genotypes were associated with IL-1RA levels, 

a cytokine involved in inflammatory responses to malaria 
infection.

A number of studies have explored the association 
between FcγRIIA/CD32 rs1801274 SNP and malaria sus-
ceptibility resulting in contradictory findings [28, 29, 40, 
54–59]. However, only a limited number included infants 
and the majority of those focused on severe malaria (e.g. 
severe malarial anaemia and high-density parasitae-
mia) [25, 60]. The strongest evidence of FcγRIIA/CD32 
rs1801274 (A allele; variant H) protection against blood-
stage malaria infections comes from a meta-analysis 
study on 6928 subjects from Africa and Asia [40]. Results 
in this study show a similar protective effect of the A 
allele of the FcγRIIA/CD32 rs1801274 SNP against both 
malaria infection and disease, with associations con-
firmed in both co-dominant (AA vs GG and GA vs GG) 
and dominant (GA/AA vs GG) models after adjusting by 
potential confounding factors.

Fcγ receptors (FcγRI, FcγRII, FcγRIII) bind to the Fc 
domain of IgG on immune cells and thereby mediate 
the initiation of a variety of immunological responses 

a

b

Fig. 1 IL‑1β levels in unstimulated and TLR7/8‑stimulated cord blood 
samples across IL‑1β rs1143634 SNP genotypes (GG, AG and AA). 
Violin plots (including median with interquartile range) showing 
variation of IL‑1β levels across genotype groups in un‑stimulated 
(a) and stimulated (b) samples. Numbers in each genotype group 
(N = 312): GG: n = 247, AG: n = 62 and AA: n = 4

a

b

P=0.619

P=0.016

Fig. 2 IL‑1RA levels in unstimulated and TLR7/8‑stimulated cord 
blood samples across FcγRIIA/CD32 gene (rs1801274) genotypes 
(GG, AG and AA). Violin plots (including median with interquartile 
range) showing variation of IL‑1RA levels across genotype groups 
in un‑stimulated (a) and stimulated (b) samples. Numbers in each 
genotype group (N = 309): GG: n = 145, GA: n = 128 and AA: n = 36



Page 10 of 14Natama et al. Malar J           (2021) 20:94 

including antigen presentation, phagocytosis, cytotox-
icity, release of inflammatory mediators and the modu-
lation of immune responses [61, 62]. Therefore, FcγRs 
are an important link between cellular and humoral 
immunity in host defence against malaria infection 
[62]. FcγRIIA, which is expressed on the surface of all 
types of cells of the immune system, is a low affinity 
receptor for monomeric IgG, but binds IgG immune 
complexes efficiently [63]. FcγRIIA/CD32 rs1801274 
has been found to alter the gene function in  vitro, by 
extending the preferential affinity of the wild-type G 
allele for IgG1 and IgG3 towards affinity for IgG2 [57, 
64]. Therefore, it’s reasonable to believe that the effi-
cient binding to IgG2 while retaining its affinity to IgG1 
and IgG3 increase the antibody mediated protective 
effect against malaria. It has been also suggested that 
differential binding between immune complexes and 
Fcγ receptors due to polymorphisms in FcγRIIA induce 
changes in the ability of immune cells to respond to 
P. falciparum infection through production of inflam-
matory mediators [58, 62, 64]. Here, the effect of 
rs1801274 SNP in FcγRIIA/CD32 gene on unstimulated 
and TLR-stimulated IL-1RA production in cord blood 
samples was tested, as it has been previously demon-
strated that FcγRIIA/CD32 plays a key role in IL-1RA 
production through binding of immune complexes to 
monocyte, macrophage and neutrophil lineage cells 
[52, 53]. Several studies have demonstrated the clinical 
relevance of IL-1RA in immune responses to malaria 
[65–68], which acts modulating disease severity by 
competing with the pro-inflammatory cytokines IL-1α 
and IL-1β for binding sites on the IL-1 type I recep-
tor and inhibits IL-1 signalling [69]. While there were 
no significant differences in the spontaneous produc-
tion of IL-1RA by cord blood cells across FcγRIIA/
CD32 rs1801274 genotypes, upon TLR7/8 stimulation, 
individuals with GA genotype had significantly higher 
levels of IL-1RA compared with those with the wild 
type GG genotype. Remarkably, in infants from this 
cohort TLR7/8-induced IL-1RA production in cord 
blood was an independent predictor of malaria protec-
tion during the first year of life [36]. Therefore, study 
findings support the hypothesis that variability in sus-
ceptibility to malaria across FcγRIIA/CD32 rs1801274 
genotypes is mediated, at least partially, by changes 
in immune complex-mediated cytokine production. 
In addition to the protective effect of IgG1 and IgG3, 
FcgR2A mutant carriers are likely to be protected due 
to the high affinity of the A allele product to IgG2 pos-
sibly by improving the antibody mediated protective 
effect. Given that this protective effect could be effec-
tive through the mediation of a variety of immuno-
logical responses including inflammatory mediators, 

level of IL1-RA could represent one of the changes in 
innate immune response to malaria infection between 
the mutant A and the wild-type G allele carriers. The 
fact that a significant difference was not observed for 
homozygous allele could be due to limited number of 
individuals carrying the AA genotype in the subset of 
data analysed.

The second genetic variant in immune genes asso-
ciated with malaria protection in this study was the 
IL-1β rs1143634 SNP. The carriage of IL-1β rs1143634 
mutated allele A (both in homozygosity and heterozy-
gosity) was associated with a decreased risk of malaria 
infection (84% and 43% reduction, respectively). In addi-
tion, AA homozygote carriers (but not AG) had a sig-
nificantly reduced risk of clinical malaria, suggesting an 
enhanced protective effect of AA homozygosity. This 
is the first study to report a protective effect of IL-1β 
rs1143634 SNP against malaria infection and uncom-
plicated disease in infants. Previous studies assessing 
associations of IL-1β rs1143634 and malaria susceptibil-
ity reported heterogeneous findings in children includ-
ing an association with higher peripheral parasitaemia 
in Ghanaian children (n = 461; aged 1–12  years) [70], 
an association with severe malaria in Gambian children 
(n = 1420; aged < 5  years) [71], or no significant asso-
ciation with malaria susceptibility in Cameroonian chil-
dren (n = 1862; aged 1–14 years) [72]. These contrasting 
results may be attributed to differences in age groups, 
ethnicity and/or malaria phenotype evaluated.

IL-1β is a pro-inflammatory cytokine that is implicated 
in the first line of defence against pathogens, includ-
ing the hepatic and erythrocytic stages of malaria para-
sites [73–75]. However, high levels of sustained IL-1β 
production may induce pathogenic effects that promote 
disease manifestation and severity [76–78]. Previous 
studies have already demonstrated a correlation between 
IL-1β rs1143634 SNP and increased in vitro production 
of IL-1β [79, 80]. To investigate whether the observed 
protective effect of the rs1143634 SNP in this study was 
related to functional changes in IL-1β production, IL-1β 
levels in cord blood were compared across genotypic 
groups but no significant differences were observed nei-
ther in un-stimulated or TLR7/8-stimulated samples. 
Genetic variations occurring in genes encoding inflam-
matory cytokines can have a direct effect on the innate 
immune responses to malaria infection and disease man-
ifestation. In this regard, the protective effect of the IL-1β 
rs1143634 could be due to the modulation of IL-1β level 
towards a protective effect instead to levels that could be 
harmful.

However, these findings should be interpreted with 
caution due to very low number of individuals carrying 
the AA genotype among the subset of infants that could 
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be analysed (n = 4) and, therefore, potential functional 
changes in IL-1β production by IL-1β rs1143634 SNP 
cannot be ruled out. Likewise, it is worth noting that 
IL-1β production is likely to be influenced by other SNPs 
in IL-1β gene, as well as polymorphisms in inflammatory 
mediators such as TNF [81–84] that were not assessed 
in this study. Correlation between SNP of interest and 
cytokine levels in different genotypes should be further 
explored in different malaria phenotypes (severe, uncom-
plicated, infection) in the field to elucidate these con-
trasting results.

Other genes coding for major TLRs (i.e. TLR1, 4 and 
9) and cytokines (i.e. IL-4, IL-10, IL-17F and TNF) did 
not show significant association with malaria infection 
and clinical episodes, although rs1800890 SNPs in IL-10 
gene showed a trend towards increased susceptibility to 
malaria infection or clinical episode in multivariate anal-
ysis (P = 0.057 and P = 0.052, respectively). IL-10 is a key 
immuno-regulator of immunity to infections [85] and has 
been associated with various malaria-related phenotypes, 
such as uncomplicated malaria, severe malaria, severe 
malaria anaemia and high parasite density [86–91]. In 
addition, a number of studies have reported associations 
between IL-10 SNPs and susceptibility to malaria with 
either protective effects in some SNPs and increased 
susceptibility in others [72, 92–95]. Therefore, this ten-
dency of an increased risk of malaria among carriers of 
rs1800890 SNP in IL-10 gene, could results from changes 
that do not allow adequate modulation of inflammatory 
responses since IL-10 is an anti-inflammatory cytokine.

Conclusion
This study showed that the mutated A allele of IL-1β 
rs1143634 and mutated A allele of FcγRIIA/CD32 
rs1801274 are associated with protection against both 
malaria infections and uncomplicated disease during the 
first year of life. These findings suggest that genetic poly-
morphisms in genes driving innate immune responses 
could condition malaria susceptibility during the first 
year of life, possibly by modulating production of inflam-
matory mediators. Future investigations on the epistatic 
effects of immune genes polymorphisms described here 
and functional studies may contribute to further under-
stand how host genetic variation influences malaria sus-
ceptibility in infancy.
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