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Abstract

Background: Determining gestational age in resource-poor settings is challenging because of limited availability of
ultrasound technology and late first presentation to antenatal clinic. Last menstrual period (LMP), symphysio-pubis
fundal height (SFH) and Ballard Score (BS) at delivery are therefore often used. We assessed the accuracy of LMP,
SFH, and BS to estimate gestational age at delivery and preterm birth compared to ultrasound (US) using a large
dataset derived from a randomized controlled trial in pregnant malaria patients in four African countries.

Methods: Mean and median gestational age for US, LMP, SFH and BS were calculated for the entire study
population and stratified by country. Correlation coefficients were calculated using Pearson’s rho, and Bland Altman
plots were used to calculate mean differences in findings with 95% limit of agreements. Sensitivity, specificity,
positive predictive value and negative predictive value were calculated considering US as reference method to
identify term and preterm babies.

Results: A total of 1630 women with P. falciparum infection and a gestational age > 24 weeks determined by
ultrasound at enrolment were included in the analysis. The mean gestational age at delivery using US was 38.7
weeks (95%CI: 38.6–38.8), by LMP, 38.4 weeks (95%CI: 38.0–38.9), by SFH, 38.3 weeks (95%CI: 38.2–38.5), and by BS
38.0 weeks (95%CI: 37.9–38.1) (p < 0.001). Correlation between US and any of the other three methods was poor to
moderate. Sensitivity and specificity to determine prematurity were 0.63 (95%CI 0.50–0.75) and 0.72 (95%CI, 0.66–0.76)
for LMP, 0.80 (95%CI 0.74–0.85) and 0.74 (95%CI 0.72–0.76) for SFH and 0.42 (95%CI 0.35–0.49) and 0.77 (95%CI 0.74–
0.79) for BS.
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Conclusions: In settings with limited access to ultrasound, and in women who had been treated with P.
falciparum malaria, SFH may be the most useful antenatal tool to date a pregnancy when women present
first in second and third trimester. The Ballard postnatal maturation assessment has a limited role and lacks
precision. Improving ultrasound facilities and skills, and early attendance, together with the development of
new technologies such as automated image analysis and new postnatal methods to assess gestational age,
are essential for the study and management of preterm birth in low-income settings.

Keywords: Pregnancy, Gestational age, Methods, Ultrasound, Ballard score, Last menstrual period, Symphysio-
pubis fundal height, Low income country

Background
Clinical trials and cohort studies investigating adverse
pregnancy outcomes such as preterm birth (PTB, < 37
gestational weeks) and fetal growth restriction (suspected
when the birthweight is below the 10th percentile of a
birthweight for gestational age standard) rely on fetal
biometry to estimate gestational age at delivery [1]. In
high-income settings where most women attend health
centres early in pregnancy (< 13 weeks) this approach has
become routine practice, and pregnancies are dated
according to fetal crown-rump length (CRL) [2].
In most low and middle-income countries (LMICs) de-

termining gestational age at rupture of membranes and/or
onset of labour is challenging, and postnatally birthweight
alone is to crude a measure and is unable to differentiate
between growth-restricted and preterm babies [3]. Al-
though ultrasound technology is becoming more affor-
dable and available, access tends to be limited to tertiary
centres and private practice; the majority of pregnancies
are thus dated using other methods [4]. Last menstrual
period (LMP) can predict gestational age well if cycle
characteristics and the date of onset of the last menstrual
bleed can be clearly established, yet this has proven diffi-
cult in many LMIC settings [5, 6]. Symphysio-pubis fundal
height (SFH) is a cheap and feasible alternative, appears
more accurate than other non-ultrasound based methods,
and predicts gestational age at delivery best when sequen-
tial measurements are used [5, 7]. SFH measurement at
each visit is an essential part of antenatal care and a useful
tool to detect pregnancies at risk of adverse outcomes.
However, SFH accuracy depends on gestational age and
body mass index. [7]
Another option available to healthcare workers in

LMICs is the Ballard score (BS) which estimates a gesta-
tional age range through postnatal examination of physical
and neurological neonatal maturity characteristics [8, 9].
However, its obvious clinical disadvantage is that it cannot
be used to instigate critical treatment such as antenatal
steroids for fetal lung maturation in women presenting in
suspected preterm labour and preterm rupture of mem-
branes before 34 gestational weeks. Nevertheless, it is a
practical solution to the aforementioned challenges, in

particular when women with no antenatal care come to
deliver. Most reports suggest that the postnatal matur-
ation scores are of limited use in LMICs, and perform
worse than LMP and SFH [5, 10–13].
Ultrasound is increasingly used in LMICs but its avai-

lability remain limited in rural and remote settings; in
addition, a great proportion of women still attend late for
antenatal care, often after 24 gestational weeks [14]. In the
research context, innovative methods are being developed
to encourage early presentation [15], but late presentation
will remain a critical issue in the general patient popula-
tion. Using foetal biometry in later pregnancy to estimate
gestational age has reduced accuracy as the standard devi-
ation of growth measurements widens and foetal growth
aberrations (growth restriction, macrosomia) are more
likely. Late pregnancy foetal biometry can be used to
correct LMP [11] and, even when used alone, it more ac-
curately predicts gestational age and preterm birth than
all other non-ultrasound methods [5], despite the fact that
dating by head circumference after 24 gestational weeks
(which is the most commonly used measurement) is
known to underestimate gestational age, thereby overesti-
mates preterm birth [12].
The present study is a secondary analysis of data collected

as part of a large randomised controlled trial to assess the ef-
ficacy and safety of four different artemisinin-combination
therapies in pregnancy [16]. Using fetal biometry as the
reference we assessed the accuracy of LMP, SFH, and BS to
estimate gestational age at delivery and preterm birth.

Methods
This assessment was conducted in the framework of an
open label, randomized controlled clinical trial to assess
the efficacy and safety of four different artemisinin-com-
bination therapies in women presenting with P.
falciparum malaria in the second and third trimester of
pregnancy. The trial was conducted between June 2010
and August 2013 at seven sites across four countries,
namely Burkina Faso, Ghana, Malawi and Zambia (Clin-
Trial.gov code: NCT00852423). Eligible patients were
randomized to one of four treatment arms and followed
up weekly until day 63 and then again at delivery. The
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methods of the trial, including details on quality as-
surance and quality control are described in detail
elsewhere [17], as well as the results of the main
outcomes [16].

Ultrasound
Since only women in the second or third trimester were
eligible into the study, gestational age at enrolment was
determined using diagnostic ultrasound (US) imaging
equipment (FFSonic UF-4100) with a 3.5 MHz trans-
ducer for transabdominal examination normally and a
5MHz transducer for very thin women. Gestational age
was calculated based on biparietal diameter, abdominal
circumference, and femur length [18] using standard
algorithms [19]. For women in the first trimester of
pregnancy, the crown-rump length (CRL) was used to
confirm exclusion from the study.
Comprehensive quality assurance and quality control

(QA/QC) systems were put in place to ensure the quality
and reliability of measurements, and the inter-site com-
parability of US measurements. This included centrally
purchased equipment, a standard operating procedure
(SOP) which was applicable and mandatory across all
sites (Additional file 1), two specifically dedicated staff
per site to carry out all US measurements and central
training before study start. Periodical training was deliv-
ered on site by experienced obstetricians and internal
QC measures conducted at each site. This included re-
peated measurements every first week of the month by
the second trained staff member and every third week
by repeated measurements of one patient.

Symphysio-fundal height measurement
SFH measurement was undertaken at enrolment using a
non-elastic tape measure. Single measurement was taken
from the highest point of the uterus (fundus) to the top
of the symphysis pubis.

Last menstrual period
At enrolment into the study, patients were asked about
the date of their LMP. LMP was defined as the date of
the first day of the last menstruation.

Ballard score
The gestational age of babies delivered at the hospital
was assessed using the BS. Physical and neurological
criteria were recorded according to standard guidelines
[8]. Each of the criteria was scored from − 1 to 5. The
combined scores range from − 10 to 50, with the corre-
sponding gestational ages being 20 weeks and 44 weeks
(2 week range).

Statistical analyses
All statistical analyses were done using Stata v14 (Stata
Corp, USA). For the purpose of this analysis, women
with a gestational age > 24 weeks at enrolment, where
the birth date of the baby was not documented, who had
twins, miscarriages or stillbirths were excluded. In a
sensitivity analysis women ≥24 weeks gestational age at
enrolment were included.
The level of significance was defined as p ≤ 0.05 and

US was considered the reference method. Mean and
median gestational age for US, LMP, SFH and BS were
calculated for the entire study population and stratified
by country. Inter-country and inter-method comparisons
were done using the Kruskal-Wallis method; correlation
coefficients were calculated using Pearson’s rho (r),
Bland Altman plots were used to calculate mean diffe-
rences in findings and 95% limit of agreements (LoA). In
order to improve clarity, results of all methods were
rounded to the nearest full week for scatterplots [20].
To calculate performance of each method, all babies

with gestational age ≥ 37 weeks were categorized as
“term”, all other babies as “pre-term”. A “term” result
was defined as a negative outcome, a “pre-term” result
as a positive result. Sensitivity, specificity, positive pre-
dictive value (PPV) and negative predictive value (NPV)
were calculated accordingly considering US as reference
method [21]. Additional analysis was performed using
32 weeks as a cut-off to define very preterm babies.

Results
A total of 3428 women in the second and third trimester
of pregnancy and with microscopy-confirmed P. falcip-
arum infection were included in the main trial [16].
Women with a gestational age > 24 weeks at enrolment
(n = 1579), those without documented birth date of the
baby (n = 130) or who had twins (n = 38), miscarriages or
stillbirths (n = 51) were excluded from the present ana-
lysis, resulting in a total of 1630 (47.5%) women included.
Out of them, 382 (23.4%) were enrolled in Burkina Faso,
582 (35.7%) in Malawi, 294 (18.0%) in Ghana and 372
(22.8%) in Zambia.
The mean maternal age at recruitment was 22.3 years

(95%CI: 22.1–22.6), with the lowest mean age of 20.6
years (95%CI: 20.2–21.1) in Zambia and the highest with
24.5 years (95%CI: 23.8–25.2) in Ghana (p < 0.001 for all
country comparison) (Table 1). There were no diffe-
rences in mean height and weight by country. Mean ges-
tational age at enrolment was 20.3 weeks (IQR: 16–22)
and no patient with gestational age below 13 weeks was
enrolled (Table 1).
Results from BS were available for 93.5% (n = 1520)

babies, results from SFH for 99.6% (n = 1624) mothers
and LMP for 24.8% (n = 404) of enrolled women.
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The mean gestational age at delivery using US was
38.7 weeks (95%CI: 38.6–38.8, median: 38.9 weeks,
range: 23.1–44.8 weeks), by LMP was 38.4 weeks (95%CI:
38.0–38.9, median: 38.7 weeks, range: 22.9–60.9 weeks),
by SFH was 38.3 weeks (95%CI: 38.2–38.5, median: 38.3
weeks, range: 21.1–49.7 weeks) and by BS was 38.0
weeks (95%CI: 37.9–38.1, median: 38.0 weeks, range:
28.0–42.0) (p < 0.001) (Fig. 1).
Correlation between US and any of the other three

methods was poor to moderate (LMP: r = 0.38, SFH:
r = 0.63, BS: r = 0.31). However, correlations varied
considerably in between countries (Table 2 & Fig. 2).
The mean difference between US and any of the other

methods was less than 1 week overall (LMP: 0.34 weeks,
SFH: 0.40 weeks, BS: 0.80 weeks) but showed great in-
tercountry variations (Table 2 & Fig. 3). The 95% limits
of agreement were considerable (LMP:-7.9 to 8.6 weeks,
SFH: − 4.9 to 5.8 weeks, BS: − 3.5 to 5.1 weeks) and

again showed great variation in the different countries
(Table 2 & Fig. 3).
The sensitivity analyses including women ≥24 weeks’

gestation at enrolment into the study showed results
consistent with the main analyses for BS with mean dif-
ference of 0.66 weeks (Pearson r = 0.27, 95% limit of
agreement − 4.1to 5.4, range of averages 27.29–43.21)
and higher mean differences for LMP with 1.15 weeks
(Pearson r = 0.33; 95% limit of agreement − 7.9 to 10.1,
range of averages 25.21–50.14 weeks) and SFH with 0.89
weeks (Pearson r = 0.63, 95% limit of agreement − 4.9 to
6.3, range of averages 22.14–46.85 weeks).
Using ultrasound as the reference, 1391 mothers deli-

vered term babies compared to 239 preterm babies (< 37
weeks’ gestation). Sensitivity, specificity, PPV and NPV were
0.63 (95%CI 0.50–0.75), 0.72 (95%CI: 0.66–0.76), 0.28
(95%CI: 0.21–0.36) and 0.92 (95%CI: 0.88–0.95) respect-
ively for LMP, 0.80 (95%CI 0.74–0.85), 0.74 (95%CI 0.72–

Table 1 Baseline data by country

All Burkina Faso Malawi Ghana Zambia p

Mean maternal age at
enrollment in years (95%CI)

22.3 (22.1–22.6) 24.0 (23.4–24.5) 21.3 (20.9–21.7) 24.5 (23.8–25.2) 20.6 (20.2–21.1) < 0.001

Mean maternal weight at
enrollment in kg (95%CI)

54.8 (54.4–55.2) 54.6 (53.8–55.3) 54.9 (54.2–55.5) 54.9 (54.0–55.8) 54.9 (53.9–55.8) 0.9

Mean maternal height at
enrollment in cm (95%CI)

156.6 (156.3–156.9) 156.6
(156.0–157.2)

156.5 (156.0–157.0) 156.9 (156.1–157.7) 156.6 (155.8–157.3) 0.8

Mean gestational age in
weeks at enrolment by US
(IQR; range)

20.3
(16–22; 13–24)

20.8
(19–23; 16–24)

19.7
(17–22; 13–24)

20.6
(19–23; 16–24)

20.5
(19–22;16–24)

<0.001

Mean birthweight of baby
in gram (95%CI)

2876.7
(2854.1–2900.0)

2844.0
(2800.5–2887.5)

2937.4
(2899.3–2975.6)

2919.8
(2859.4–2980.3)

2780.1
(2734.1–2826.1)

<0.001

Fig. 1 Histogram of the relative frequency of gestational age by US, SFH, LMP and BS
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0.76), 0.35 (95%CI 0.31–0.39) and 0.96 (95%CI 0.94–0.97)
respectively for SFH and 0.42 (95%CI 0.35–0.49), 0.77
(95%CI 0.74–0.79), 0.23 (95%CI 00.19–0.27) and 0.89
(95%CI 0.87–0.91) respectively for BS (Tables 3 and 4).
Sensitivity across all methods did not differ significantly
(p = 0.093), whereas all other indicators showed significant
differences (all p < 0.01). When the cut-off was set at 32
weeks to define very preterm babies sensitivity decreased
significantly for LMP and BS to 0.33 (95%CI: 0.01–0.91)
and 0.10 (95%CI: 0.001–0.30) respectively (p < 0.01 for

both), but increased to 0.90 (95%CI: 0.70–0.99) for SFH
(p < 0.01). Specificity increased to 0.94 (95%CI: 0.91–0.96),
0.98 (95%CI: 0.97–0.98) and 1.00 (95%CI: 1.00–1.00) for
LMP, SFH and BS respectively (p < 0.01 for all). When
comparing true results to false results deriving from the dif-
ferent cut-offs the difference was significant (p < 0.0001).

Discussion
Findings of this study suggest that all of three
non-sonographic tools to estimate gestational age at de-
livery generally correlate poor to moderate with US. A
single SFH measurement at enrolment (> 13 and < 25
weeks’ gestation) correlates best, and BS the least, with
the reference method ultrasound.
The correlation between methods differed substantially

depending on country. For example, r was close to 0
(r = 0.16) when comparing US and BS in Zambia, how-
ever performance was better in Malawi (r = 0.5). While a
QC/QA system was set up for US, for the other methods
such a system was not in place and therefore inter-sites
comparability may be limited. When comparing US to
LMP the correlation turned negative (r = − 0.06) for
Burkina Faso and did not excel in any of the other
countries. This contradictory finding may partly be due
to the low sample size for Burkina Faso for LMP data,
but presumably also reflects the substantial recall bias
and uncertainty due to irregular menstrual period as
well as potential differences in literacy rates.
In settings with limited access to ultrasound, SFH may

be the most useful antenatal tool to date a pregnancy, at
least at the range of gestational age at enrolment in this
study. This is corroborated by findings from previous re-
search, and precision may be improved when multiple
measurements are available [5, 7]. Although there were
differences in correlation across country sites, these were
less marked for SFH than for BS.
In a research context in LMIC settings, ultrasound dat-

ing and early attendance are pivotal to assess outcomes
such as gestational age at delivery and preterm birth cor-
rectly. Yet, since such equipment and expertise are often
unavailable SFH (preferably sequential) is probably the
best alternative to US measurements in routine care and
for further clinical management of the pregnancy. In order
to ensure quality measurements, healthcare workers must
be taught to assess SFH in a methodical manner [22], and
should be supported by ongoing training and audit.
This paper provides further confirmation of the

limitations of BS postnatal maturation assessment
for pregnancy dating. One significant issue will un-
doubtedly be that of training and may explain the
poor correlation observed at the site in Zambia; BS
assessments, in particular its neurological component
require training and refresher training [23]. Postnatal
maturation assessment is the most complex of all
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gestational age estimation methods, whereby the
examiner is required to adequately assess and
process ‘images’ and findings from clinical examin-
ation. When one or more SFH measurements are
available it may be reasonable to forgo BS assess-
ments and focus limited resources and time on other
assessments and activities, such as effective neonatal
resuscitation and accurate birthweight measurements.
BS retains a role in unbooked pregnancies, and its
predictive ability in this context may be improved by
taking birthweight into account [24], and by estab-
lishing and evaluating quality control and training
methods for use in busy clinical settings. Improving
the postnatal prediction of gestational age is subject
of an ongoing large multi-centre study, which aims
to develop a simplified and pragmatic algorithm
based on existing assessment approaches, anthopo-
metry and neonatal feeding maturity [25].
A recent call by the Bill and Melinda Gates Founda-

tion has recognised the need for new postnatal tools
[26]. Approaches such as using newborn infant screen-
ing metabolite measurements [27], complex modelling

integrating a number of simple clinical parameters [25],
smartphone ultrasound devices, and automated image
analysis are being evaluated at present.
Accuracy of any method, including ultrasound, is

assessor-dependent; training and quality control are
key tools to ensure optimal measurements, which can
be achieved for routine care in challenging LMIC
settings [28]. Expanding ultrasound services in low-in-
come settings may be a key strategy to improve preg-
nancy care and outcomes [29], and is certainly
feasible [28, 30]. Handheld ultrasound devices, includ-
ing smartphone ultrasound, may assist with expanding
services in LMICs, and batteries can be charged using
solar power.
The present evaluation has a number of limitations.

The current reference standard for pregnancy dating is
the measurement of the fetal crown-rump length before
13 weeks’ gestation. No measurements were done at this
early gestation due to the inclusion and exclusion cri-
teria of the main trial, and thus algorithms estimating
gestational age from fetal head circumference, femur
length and abdominal circumference had to be used,

Fig. 3 Boxplot of mean gestational age by different methods and country

Table 3 Extended two-by-two table for dichotomous outcome (term/preterm)

LMP SFH BS

≥37 weeks
(term)

< 37 weeks
(preterm)

≥37 weeks
(term)

< 37 weeks
(preterm)

≥37 weeks
(term)

< 37 weeks
(preterm)

US ≥37 weeks (term) n = 246 n = 98 n = 1025 n = 360 n = 1001 n = 307

< 37 weeks
(preterm)

n = 22 n = 38 n = 48 n = 191 n = 123 n = 89
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introducing imprecision [12]. Amongst women > 24
weeks gestational age at enrolment the sensitivity ana-
lyses showed no major difference in trends with regards
to agreement between methods for BS but showed
higher mean difference in weeks for SFH suggesting an
increasing variation [12]. Moreover, analyses were per-
formed on measurements taken amongst women with
malaria infection, which may cause early fetal growth
restriction [31], and could lead to an underestimation of
gestational age, in particular when HC and FL are used
to date the pregnancy.
Lastly, data analysis for LMP was limited primarily to

one site only, and only one SFH per women was avail-
able for analysis. However, the sample size for other
measurements was adequate.

Conclusions
In conclusion, in settings where ultrasound scanning is
still limited SFH may be the most useful tool to predict
gestational age at delivery if measured between 13 and
24 gestational weeks amongst women undergoing
treatment for P. falciparum malaria. Postnatal matur-
ation assessments have a limited role and lack precision.
Improving ultrasound facilities and early attendance,
together with the development of new technologies such
as automated image and video analysis for both ultra-
sound and BS and new postnatal methods to assess
gestational age, will greatly assist with the management
of preterm birth in low-income settings.
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