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Abstract

Circulating monocyte sub-sets have recently emerged as mediators of divergent immune functions during infectious
disease but their role in helminth infection has not been investigated. In this study we evaluated whether ‘classical’
(CD14brightCD162), ‘intermediate’ (CD14brightCD16+), and ‘non-classical’ (CD14dimCD16+) monocyte sub-sets from peripheral
blood mononuclear cells varied in both abundance and ability to bind antigenic material amongst individuals living in a
region of Northern Senegal which is co-endemic for Schistosoma mansoni and S. haematobium. Monocyte recognition of
excretory/secretory (E/S) products released by skin-invasive cercariae, or eggs, of S. mansoni was assessed by flow cytometry
and compared between S. mansoni mono-infected, S. mansoni and S. haematobium co-infected, and uninfected
participants. Each of the three monocyte sub-sets in the different infection groups bound schistosome E/S material.
However, ‘intermediate’ CD14brightCD16+ monocytes had a significantly enhanced ability to bind cercarial and egg E/S.
Moreover, this elevation of ligand binding was particularly evident in co-infected participants. This is the first demonstration
of modulated parasite pattern recognition in CD14brightCD16+ intermediate monocytes during helminth infection, which
may have functional consequences for the ability of infected individuals to respond immunologically to infection.
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Introduction

Helminth parasites infect over 1 billion of the world’s

population causing a range of overt morbid diseases and can

exert substantial modulatory effects on the immune system [1,2].

Schistosoma mansoni and S. haematobium are chronic, blood-dwelling,

parasitic helminth infections of humans [3] and are co-endemic in

many parts of Africa. Both species can cause life-threatening

morbidities including damage to the intestines and liver (S.

mansoni), or urogenital tract and kidneys (S. haematobium) [4].

Schistosome infection of the mammalian host is by skin

penetration following exposure to waterborne cercariae [5,6]

which release excretory/secretory (E/S) material containing an

abundance of glycosylated molecules [7] and proteases [8]. These

E/S products aid penetration and migration of larvae, and

consequently can act as initial stimuli of the cutaneous innate

immune system [9]. Schistosome E/S products released in the first

3 hours after infection (0-3hRP) [10] stimulate both dendritic cells

(DC) and macrophages (Mw) through binding of constituent

ligands to pattern recognition receptors (PRR) such as Toll-like

receptors (TLRs) [11], and C-type lectins (CLRs) including the

mannose receptor (MR) [12]. These E/S products also have

immune-modulatory effects on antigen presenting cells (APCs)

such as DC in vitro and in vivo [13], particularly after repeated

exposures, which can impact on downstream modulation of anti-

schistosome responses and immunopathology in the liver [14].

Following migration and maturation, adult schistosome worms

pair in the venous blood supplying the intestines (S. mansoni), or the

bladder and urogenital tract (S. haematobium), and commence

release of hundreds of eggs per day [15]. Mature eggs provide

another source of glycosylated E/S products [16] termed egg

secreted products (ESP). This E/S material may be critical in

mediating the transit of eggs across host tissues to reach the

external environment [17] and is implicated as a mediator of egg-

related granulomatous immunopathology via induction of pro-

fibrotic Th2 responses [18,19]. Interestingly, an abundantly

expressed ESP, Omega 1 [20], mediates Th2 priming via

internalization into DC following ligation of the MR [21].

Despite the important role of E/S products in schistosome

invasion, tissue migration and transmission of eggs, combined with

their observed immunological priming and modulatory capacities

in murine infection models, analysis of human immune responses

to E/S material is very limited. Recently, we investigated cercarial

E/S stimulation of whole blood cultures (WBC) from individuals
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from a region in Senegal which is co-endemic for S. mansoni and S.

haematobium [22]. We identified significantly elevated levels of

immune-regulatory IL-10, and increased ratios of IL-10:TNFa in

infected individuals indicative of enhanced regulatory immune cell

activity [22]. As the WBC culture supernatants were harvested at

24 hours post-stimulation with E/S material, the cytokines

produced were most likely derived from the innate immune cell

compartment (e.g. monocytes).

In this report, we extend our previous study by examining, for

the first time in the context of human helminth infection, the

parasite E/S pattern-recognition profiles of circulating monocyte

sub-sets. We classified peripheral blood monocytes according to

their expression of CD14 and CD16 in order to identify three sub-

sets corresponding to ‘classical’ (CD14brightCD162), ‘intermediate’

(CD14brightCD16+),and ‘non-classical’ (CD14dimCD16+) mono-

cytes which have recently emerged as mediators of divergent

immune functions during infectious disease [23–30]. Our study

shows that intermediate CD14brightCD16+ monocytes have a

greater ability to bind both cercarial and egg E/S products than

other monocyte sub-sets, and that this capacity is greater in

patients co-infected with both schistosome species compared to

uninfected controls or those infected with S. mansoni only.

Methods

Ethics statement
This study was approved by the review board of the Institute of

Tropical Medicine, Antwerp, the ethical committee of Antwerp

University Hospital and ‘Le Comité National d’Ethique de la

Recherche en Santé’ Dakar, Senegal. Written informed consent

was obtained from all participants. All community members were

offered a single dose of praziquantel (40 mg/kg) and mebendazole

(500 mg) after the study to clear helminth infection.

Study population and parasitology
Participants were recruited from the village of Diokhor Tack

(N16.19u; W15.88u) in a region co-endemic for S. haematobium and

S. mansoni [31]. Each participant provided two stool and two urine

samples (with a minimum total volume of 10ml urine) on

consecutive days to quantify schistosome eggs microscopically as

described previously [22]. Participants were classified as ‘mono-

infected’ if they had an S. mansoni egg count $1 egg in one or more

of their stool samples and ‘co-infected’ if they were also found to

have $1 S. haematobium egg in one or more of their urine samples.

Participants infected with S. haematobium only were not included in

this study. Of 54 participants who provided a blood sample, 4 were

excluded for providing insufficient samples for parasitological

analysis and 9 were excluded for providing insufficient blood

volume to conduct all ligand binding assays.

Innate immune ligands
The following ligands were used for binding studies of PBMCs:

schistosome cercarial E/S (0-3hRP at 50 mg/ml), egg E/S product

(ESP at 25 mg/ml), zymosan-coated AlexaFluor488 conjugated bio-

particles (0.56106/tube; Life Technologies Ltd., Paisley, U.K.) as

a positive control, and the fluorescein-labelled polyacrylamide

glycoconjugate D-mannose (5 mg/ml; Lectinity Holding Inc.,

Moscow, Russia). Although zymosan is a yeast-derived ligand,

zymosan bio-particles were selected as a positive control for the

parasite E/S products because both ligands are heterogeneous in

biochemical composition (containing carbohydrates, proteins and

glycoproteins) and because like 0-3hRP, zymosan also stimulates

in vitro cultured DCs to acquire a pro-Th2 activity [10]. D-

mannose acted as a control for mannose receptor-mediated ligand

binding, based on the knowledge that 0-3hRP contains an

abundance of mannosylated glycans [7] which are important

ligands for the macrophage MR [12]. 0-3hRP and ESP were

prepared as previously described [10,17,32]. After isolation and

purification, 0-3hRP and ESP were conjugated to AlexaFluor488

carboxylic acid 2,3,5,6-tetrafluorophenyl ester (Life Technologies

Ltd, Paisley, U.K.) using established protocols [33].

PBMC isolation and culture
Venous blood was collected in heparin coated-tubes [22],

separated by density centrifugation (1400 rpm, 25 min, room

temperature) on Ficoll (GE Healthcare, Pollards Wood, U.K.) and

the resulting PBMC layer re-suspended at 106106 cells/ml in ice-

cold phosphate buffered saline (PBS) containing 0.5% bovine

serum albumin and 2 mM EDTA (Sigma Aldrich, St. Louis,

U.S.A.). Aliquots of PBMC suspension (56105 cells) were

transferred to 1.5 ml eppendorf tubes containing 50 ml of diluted

ligands and monoclonal antibody (mAb) cocktail (see below) on

ice. After a brief vortex, the suspension of PBMCs, ligands and

mAbs was incubated on ice for 60 mins, with another vortex after

30 mins. For each participant, an aliquot of PBMC was incubated

without ligands as a ligand-free control. PBMC were then washed

with 900 ml ice cold PBS, pelleted at 800 g for 5 mins, before being

re- suspended in 500 ml cell buffer containing 1% formaldehyde.

PBMC were stored at 4uC in the dark before analysis by flow

cytometry.

Antibodies and cytometry
PBMC aliquots were surface-stained with fluorescently labeled

anti-CD14 (conjugated to allophycocyanin; CD14-APC) and anti-

CD16 (conjugated to eFluor450; CD16-ef450) mAb (eBioscience,

San Diego, U.S.A.). Data was acquired with a Cyan flow

cytometer (Beckman Coulter Ltd., High Wycombe, U.K.) and

analysed using FlowJo software version 7.6.5 (TreeStar, Ashland,

U.S.A.). Cells were gated according to forward- and side-scatter

characteristics (SSC) and 5000–10000 total events acquired. An

SSChi gate was used to select for cells with high granularity, which

Author Summary

The parasite Schistosoma infects over 200 million people
world-wide and can cause serious morbidity. Infection
occurs following exposure to larvae (cercariae) which
release excretory/secretory (E/S) material to aid their entry
into exposed skin. Larvae mature into adult worms that
produce hundreds of eggs per day which also release E/S
material. Both sources of E/S material have the potential to
stimulate the host’s innate immune system. Circulating
monocytes are important cells that act as potential
sentinels in the recognition of these E/S materials.
Different sub-sets of human monocytes can be identified
according to their expression of CD14 and CD16 but their
role following infection with schistosome helminths has
not been investigated. In the current study, three sub-sets
(classical, intermediate and non-classical) were enumerat-
ed in individuals living in a region co-endemic for S.
mansoni and S. haematobium. Although all three mono-
cyte sub-sets bound to fluorescently-labelled schistosome
E/S material, the intermediate sub-set had significantly
enhanced ability to recognise cercarial and egg E/S in co-
infected participants. This is the first demonstration that
circulating human monocytes can recognize schistosome
E/S antigens and that their ability to do so is modulated by
infection which may affect the development of schisto-
some immunopathology and/or protective immunity.

Monocytes Bind Schistosome E/S Antigens
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are primarily monocytes, whereas lymphocytes and NK cells were

found in the gate for cells with low granularity. Polymorphonu-

clear granulocytes were mostly excluded by our Ficoll separation.

SSChi PBMC were further sub-divided via CD14 and CD16

expression with gates determined relative to an aliquot of cells

incubated with isotype control mAb to identify separate monocyte

sub-sets. Ligand-free PBMC controls were used to determine

threshold fluorescence intensity for AlexaFluor488 or fluorescein

above which monocyte sub-sets were considered to be positive for

ligand binding (ligand+ gate).

Statistics
The software package IBM Statistics version 19 (Armonk, U.S.A.)

was used for all statistical analyses. Mean proportions of monocyte

sub-sets for each participant were calculated from proportions

identified by cytometry of multiple aliquots of PBMC used for

ligand binding assays (n = 5/participant). Proportions of monocyte

sub-sets within the SSChi gate, proportions of each sub-set in the

SSChi ligand+ gate and proportions of ligand+ monocytes within

each monocyte sub-set met the assumptions for parametric analysis.

Thus, comparison between monocyte sub-sets was made using

paired t-tests, and comparisons between schistosome infection

groups were made using ANOVA. Post-hoc pair-wise comparisons

were made for significant ANOVA using Fisher’s test. As the total

proportions of SSChi cells in the ligand+ gate and median

fluorescence intensity (MFI) values did not meet the assumptions

of parametric tests, even after transformation, statistical compari-

sons were made using non-parametric tests. The paired Wilcoxon

test was used to compare the proportion of ligand+ SSChi cells

relative to the ligand-free control. For comparison between infection

groups, a Kruskal Wallis test was first used to determine statistical

difference between groups and pair-wise Mann Whitney U tests

were used post-hoc to identify which groups differed.

Results

Schistosome infection status does not affect the
proportions of circulating monocyte sub-sets

The study population and schistosome infection status of the

participants is detailed in Table 1 and comprised a total of 41

individuals aged 6 to 60 years old. When assigned by infection

status, the three groups had similar sample sizes, age-range and sex

ratios.

Following labelling with mAbs specific to CD14 and CD16,

three discrete populations of SSChi monocytes were identified

according to their recent characterisation and nomenclature in

human peripheral blood; i) CD14brightCD162 ‘classical’ mono-

cytes, ii) CD14brightCD16+ ‘intermediate’ monocytes and iii)

CD14dimCD16+ ‘non-classical’ monocytes (Fig. 1A). Of the two

CD14+ monocyte sub-sets, the CD14brightCD162 population was

more abundant (16.261.5% of total SSChi) than the

CD14brightCD16+ (6.860.7% of total SSChi) sub-set. Although

the CD14dimCD16+ population was the most abundant overall

(19.561.6% of total SSChi), it may include a small number of

CD142 granulocytes as previously noted [28] but

CD14dim/-CD16+ NK cells were excluded from our analysis as

they do not have a high granularity phenotype defined as SSChi.

When the relative abundances of the three monocyte sub-sets

were compared by infection status, no statistically significant

differences in the proportions of each sub-set between the un-

infected, infected with S. mansoni only, or co-infected with S.

mansoni and S. haematobium groups were identified (Fig. 1B, p.0.05

for all comparisons).

Monocyte sub-sets differ in their capacity to bind
schistosome E/S antigens

The ability of SSChi cells to recognise schistosome and non-

schistosome pathogen-associated molecular patterns (PAMPs) was

investigated by examining their ability to bind each of the

fluorescently-conjugated ligands (Fig. 2A). SSChi monocytes

bound the two schistosome E/S products, zymosan bio-particles

and D-mannose and had significantly greater proportions of cells

within the ligand+ gate than their corresponding ligand-free

controls (Fig. 2B, p,0.001 for all comparisons).

Within the SSChi population, CD14bright monocytes (both the

classical CD162 and intermediate CD16+ sub-sets) were more

efficient at binding to cercarial E/S than the CD14dim non-

classical population (Fig. 3A; CD14brightCD162 t: 3.57, p,0.01,

CD14brightCD16+ t: 6.30, p,0.001). Intermediate

CD14brightCD16+ monocytes were also the most efficient at

binding egg E/S products compared to the other monocyte sub-

sets (Fig. 3B; cf. CD14brightCD162 t: 6.438, p,0.001, and cf.

CD14dimCD16+ t: 9.29, p,0.001). However, CD14brightCD16+

intermediate monocytes were less efficient in their binding of the

control ligands zymosan and D-mannose than the other monocyte

sub-sets (Fig. 3C & D). A greater proportion of classical

CD14brightCD162 monocytes bound egg E/S than non-classical

CD14dimCD16+monocytes (Fig. 3B; t: 2.87, p = 0.007) and

classical monocytes also bound zymosan with the greatest

efficiency compared to intermediate (Fig. 3C; t: 6.41, p,0.001)

and non-classical monocytes (t: 4.40, p,0.001). The classical and

non-classical sub-sets had equivalent binding efficiency to D-

mannose (Fig 3D; t: 0.09, p = 0.931) and both bound D-mannose

with greater efficiency than the intermediate subset

(CD14brightCD162 t: 5.45, p,0.001, CD14dimCD16+ t: 4.48,

p,0.001).

Schistosome infection leads to increased schistosome E/S
antigen binding by intermediate monocytes

Having established functional distinctions between the three

SSChi populations in their ligand binding capacity, we investigated

Table 1. Characteristics of the cohort by schistosome infection status.

Un-infected Infected Co-infected

n 13 11 17

Mean age (years) +/- SEM 28.62 (4.67) 31.55 (5.69) 22.65 (3.73)

Male: Female 4:9 3:8 4:13

Geometric mean S. mansoni (eggs/g faeces) +/2 SEM 0 112.04 (235.63) 204.39 (255.32)

Geometric mean S. haematobium (eggs/10 ml urine) +/2 SEM 0 0 11.94 (15.68)

doi:10.1371/journal.pntd.0002817.t001

Monocytes Bind Schistosome E/S Antigens
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whether ligand binding within each monocyte sub-set depended

upon participant infection status within the study population.

Similar proportions of classical monocytes bound cercarial E/S in

all 3 infection groups (Fig. 4A; F2, 38: 2.12, p = 0.135). In contrast,

ligand uptake by intermediate monocyte was influenced by

infection status (F2, 38: 4.93, p = 0.013) with a significantly greater

proportion of intermediate monocytes from co-infected partici-

pants binding to cercarial E/S than those from uninfected subjects

(Fig. 4A, mean: 55.6465.31% versus 34.1064.08%, p = 0.003). A

greater proportion of non-classical monocytes also bound cercarial

E/S products in mono-infected compared with un-infected

(Fig. 4A, 13.6461.55% versus 7.6961.19%, p = 0.004) or co-

infected participants (9.8361.12%, p = 0.041).

In terms of the quantity of cercarial E/S bound by each

monocyte sub-set (determined by MFI), although classical

monocytes bound similar amounts in all infection groups

(Fig. 4B, Kruskal Wallis; X2: 2.90, p = 0.235), the amount bound

by intermediate monocytes differed according to participant

infection status (Fig. 4B, Kruskal Wallis; X2: 10.01, p = 0.007).

Hence, CD14brightCD16+ intermediate monocytes from co-infect-

ed patients bound significantly greater quantities of antigen as

judged by their higher MFI ( = 231.90) than either mono-infected

( = 34.34, p,0.05) or uninfected participants ( = 10.70, p,0.01). In

fact, intermediate monocytes from some co-infected individuals

were particularly efficient at binding cercarial E/S (i.e. 7 co-

infected participants bound .2-fold greater quantities of cercarial

E/S than the group median, Fig. 4B). There was no significant

difference between the three infection groups in the amount of

cercarial E/S bound by non-classical monocytes (Fig. 4B, Kruskal

Wallis; X2: 1.89, p = 0.388).

The proportions of classical monocytes that bound schistosome

egg E/S products were similar between the three infection groups

(Fig. 5A, F2, 38: 0.693, p = 0.506), as were the amounts of egg E/S

bound by this sub-set (Fig. 5B, Kruskal Wallis; X2: 2.11, p = 0.348).

However, significant infection-related differences were evident in

the intermediate monocyte population (Fig. 5A; F2, 38: 3.59,

p = 0.037). Greater proportions of intermediate monocytes from

co-infected subjects bound egg E/S (Fig. 5A; 46.5365.14%) than

those isolated from mono-infected participants (12.7264.00%;

p = 0.015). There was also a non-significant trend for a greater

proportion of intermediate monocytes recognising egg E/S in co-

infected versus un-infected patients (Fig. 5A; 32.7266.28%,

p = 0.075). In addition, intermediate monocytes varied in the

amount of bound egg E/S according to infection status (Fig. 5B;

Kruskal Wallis; X2: 9.60, p = 0.008) with those from the co-

infected group binding significantly greater quantities (MFI: 56.03)

than those from un-infected individuals (Fig. 5B; MFI: 5.30,

p = 0.015). There was no difference in the proportions of egg E/S+

Figure 1. The proportions of SSChi monocyte sub-sets do not differ according to schistosome infection status. A). Representative flow
plot showing distribution of total PBMC according to size and granularity, subsequently gated on cells with high granularity (i.e. SSChi, left) and then
analysed for their surface expression of CD14 and CD16 (centre) relative to cells from the same individual labelled with isotype control antibodies
(right). Three discrete cell populations were identified (denoted by separate gates); i) CD14brightCD162 ‘classical’ monocytes, ii) CD14brightCD16+

‘intermediate’ monocytes, and iii) CD14dimCD16+ ‘non-classical’/‘inflammatory’ monocytes. Numerical values indicate mean proportions of each sub-
set within the SSChi gate 6 standard error of the mean. B). The proportions of each monocyte sub-set within the SSChi gate (defined above) in all
study participants plotted according to schistosome infection status (n = 41). Data points are for individual participants in each infection group, with
horizontal bars representing the mean value. ANOVA showed no significant differences in each monocyte sub-set between the three infection groups
(p.0.05).
doi:10.1371/journal.pntd.0002817.g001
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non-classical monocytes (Fig.5A, F2, 38: 1.64, p = 0.208), nor in the

amount of egg E/S uptake by this sub-set between the 3 infection

groups (Fig. 5B, Kruskal Wallis; X2: 0.972, p = 0.615).

Evaluation of the binding recognition profiles for zymosan (a

yeast- derived bioparticle) and D-mannose (a purified glycan) by

the different monocyte sub-sets between schistosome infection

groups did not reveal any significant differences (Supplementary

Figs. S1 & S2). Although not directly comparable with our

schistosome-derived E/S products, these observations confirm that

the significantly elevated proportions of CD14brightCD16+ inter-

mediate monocytes from co-infected participants that bound

cercarial, or egg E/S products were not due to an increase in non-

specific binding regardless of the ligand.

Discussion

Monocytes are recruited to tissue sites of inflammation and

infection and are precursors of specific Mw and DC populations at

tissue sites (e.g. the skin and intestines). Thus, monocytes

potentially have both innate immune and subsequent APC

functions in response to different stages of the schistosome parasite

in multiple tissue sites. Although human circulating monocytes

have traditionally been identified on the basis of CD14 (a

lipopolysaccharide co-receptor) expression, more recently they

have been further subdivided according to the expression of the

low affinity Fc receptor, CD16, which could define their binding to

various ligands and their immune function [28]. In mice, which

are an established in vivo experimental model of human

schistosomiasis, monocytes have been defined on the basis of

expression of the surface markers Ly6C, CD115 and the

chemokine receptor CCR2, and are thought to be selectively

recruited to inflamed tissues [34]. However, monocytes that are

Ly6C- are thought to differentiate into alternatively activated Mw
[34,35] which dominate after multiple exposures to schistosome

cercariae and following chronic long-term infection [14,36].

However, due to limited characterization of the distinctions

between murine and human monocyte markers, it is difficult to

directly translate findings with murine models into human disease.

On the other hand, a consensus on the definition of monocyte sub-

sets in humans based upon their pattern of labeling with anti-

CD14 and anti-CD16 mAbs is emerging, despite ongoing debate

over the functional distinctions between these sub-sets (see

commentary in [29]). Therefore, in our study of PBMC monocytes

collected from individuals inhabiting a schistosome-endemic

region of northern Senegal, SSChi monocyte sub-sets were

classified as being CD14brightCD16- (‘classical’), CD14brightCD16+

(‘intermediate’), and CD14dimCD16+ (‘inflammatory’/‘non-classi-

cal’).

We are not aware of a precedent study that has examined the

ability of human monocyte sub-sets to differentially bind innate

immune cell ligands and thus our study is the first to demonstrate

functional distinctions between the three monocyte sub-sets in

their capacity for pattern recognition of schistosome-derived E/S.

In particular, we show that CD14bright monocytes are more

efficient at binding to schistosome E/S antigens than CD14dim

non-classical monocytes, highlighting a potential role for classical

and intermediate monocytes in innate sensing of human schisto-

some infections. Moreover, our study is the first to demonstrate

Figure 2. SSChi monocytes bind cercarial E/S and egg E/S
material. A). Representative flow cytometry dot plots showing binding
of Alexafluor488-conjugated cercarial E/S products (0-3hRP), Alexa-
fluor488-conjugated egg E/S products (ESP), Alexafluor488-conjugated
zymosan-coated bio-particles, and Fluorescein-conjugated D-mannose,
to SSChi monocytes following incubation for 60 mins. Populations of
ligand+ cells were identified for each ligand via a ligand+ gate set
relative to cells incubated without antigen (No ligand control). Plots of
ligand binding are representative of data accrued from all study
participants. Numerical values are the median for binding of each

ligand 6 the range. B). Data shows the proportions of SSChi cells in the
ligand+ gate for each participant relative to cells from the same
individuals incubated without ligands (horizontal bars indicate the
median value; Paired Wilcoxon test, ***p,0.001, ligand+ versus no
ligand control, n = 41).
doi:10.1371/journal.pntd.0002817.g002

Monocytes Bind Schistosome E/S Antigens

PLOS Neglected Tropical Diseases | www.plosntds.org 5 April 2014 | Volume 8 | Issue 4 | e2817



that schistosome infection status affects the binding of

CD14brightCD16+ intermediate monocytes, but not the other two

monocyte sub-sets, to schistosome E/S ligands. We show that a

significantly greater proportion of CD14brightCD16+ intermediate

monocytes from S. mansoni and S. haematobium co-infected

participants recognize and bind schistosome E/S products from

cercariae and mature eggs, than the same sub-set of monocytes

obtained from mono- and uninfected subjects. Furthermore, this

intermediate sub-set also binds greater quantities of E/S antigen.

This may be due to greater numbers of S. mansoni eggs in co-

infected compared to mono-infected patients (Table 1), to the

additional presence of S. haematobium, or to a combination of both

factors. Together, this data indicates that schistosome infection

affects the surface receptor repertoire of CD14brightCD16+

monocytes, enabling them to become more sensitive to recognition

of schistosome-secreted molecules, which may enhance subsequent

recruitment of this sub-set to tissue sites of infection. This is

potentially of significance in the development of schistosome-

specific protective immunity or immunopathology. Indeed, a

functional role for intermediate monocytes in the development of

severe malaria has previously been proposed [37].

Candidate monocyte surface receptors that may be influenced

by infection status and are known to be involved in pattern

recognition of schistosome cercarial and egg E/S ligands include

surface TLRs (2 and 4) and the phagocytic C-type lectin, MR,

previously implicated in glycosylated schistosome molecule recog-

nition [11,12,21,38-40]. Ligation of MR by cercarial E/S has an

immune modulatory effect [12], possibly acting on TLR signaling

[41] as proposed for other schistosome-derived glycans [39].

However, because D-mannose was not differentially recognized in

the three infection groups in our study, schistosome E/S

recognition in intermediate monocytes may be independent of

infection-related changes in MR expression. Furthermore, as

binding of zymosan (purified yeast cell wall); a commonly

encountered PAMP recognized by both TLR2 and the b-glucan

C-type lectin, Dectin-1 [42], to each of the three monocyte sub-

sets did not vary significantly between infection groups, it is

unlikely that increased recognition of parasite E/S in infected

individuals cause alterations in the TLR2 and Dectin1 PRR

complex.

The differential expression of surface receptors, other than CD14

and CD16, such as TLRs and C-type lectins, was beyond the scope

of this first investigation of monocyte heterogeneity in helminth-

infected humans. However, our findings indicate that determining

which PRRs are differentially expressed between the various sub-

sets in the context of infection status would be pertinent. Moreover,

since it is unknown at present whether differential PRR expression is

dependent upon the origin (e.g. bacterial, fungal, protozoan or

helminth) of the stimulatory ligands to which they are exposed, an

investigation of PRR expression by different monocyte sub-sets in

response to schistosome antigens alongside appropriate defined

control antigens from other pathogen sources (e.g. zymosan), is a

valid area for further investigation. In addition, it would be desirable

to determine whether binding of the different parasite E/S products

to these PRRs proceeds to endocytosis and how this impacts on

monocyte-derived APC function. Previous investigations have

already begun to further subdivide the three monocyte sub-sets

described here according to surface expression of Major histocom-

patibility molecules and chemokine receptors [37,43] although their

functional relevance to pattern recognition by monocytes has yet to

Figure 3. CD14brightCD16+ intermediate monocytes preferentially bind cercarial and egg E/S but not Zymosan or D-mannose.
Proportions of ligand+ SSChi PBMC subdivided into monocyte sub-sets according to their expression of CD14 and CD16. Binding of A) Alexafluor488-
conjugated cercarial E/S products, B) Alexafluor488-conjugated egg E/S products, C) Alexafluor488-conjugated zymosan-coated bio-particles, and D)
Fluorescein-conjugated D-mannose, to different monocyte sub-sets following incubation for 60 mins. Populations of ligand+ cells were identified for
each ligand relative to cells incubated without antigen (Fig.2A). Data was accrued from all study participants (n = 41; horizontal bars indicating the
median value; Paired Wilcoxon test, ***p,0.001, **p,0.01).
doi:10.1371/journal.pntd.0002817.g003
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be investigated. It would also be instructive to determine whether

activation, or regulatory signals, such as secretion of different

cytokines and chemokines, are induced in the respective monocyte

sub-sets following ligation of parasite E/S products at the cell

surface.

Monocytes expressing CD16 have been regarded as ‘pro-

inflammatory’ according to their cytokine secretion profile (i.e.

high TNFa and low IL-10 in response to LPS) and their ability to

present antigen, suggesting they are more mature than the CD162

classical monocyte sub-set [24]. CD16+ monocytes are also more

liable to develop into Mw or DC [44] and the CD14brightCD16+

intermediate sub-set is usually expanded under inflammatory

disorders [28,45], although our data indicates that this is not the

case for schistosomiasis. However, the intermediate monocyte sub-

set has also been identified as a major source of the regulatory

cytokine IL-10 [46]. The latter contention is supported by data

suggesting that CD14brightCD16+ intermediate monocytes may act

in an anti-inflammatory manner in response to infectious

pathogens such as Plasmodium protozoa [37]. This raises the

question as to whether the function of CD14brightCD16+

intermediate monocytes (i.e. having a pro-inflammatory versus a

regulatory role) depends on the specific molecular composition of

the stimulatory microbial or inflammatory ligand. Interestingly, it

has recently been reported that CD16+ monocytes, which are

abundant (,40%) in patients infected with Mycobacterium tubercu-

losis, fail to differentiate into mature DC [47] and can adversely

affect the ability of classical CD14+ monocytes to differentiate into

DC [47]. Therefore, CD16+ monocytes under the influence of

specific microbial ligands may give rise to immune-regulatory DC,

or divert differentiation of tissue macrophages to having anti-

inflammatory properties [48]. In this context, we have previously

shown that murine bone-marrow derived DC exposed to cercarial

E/S fail to mature taking on a ‘modulated’ or ‘regulatory’

phenotype [32] and release abundant regulatory IL-10 [10]. Thus,

in light of the report that CD14brightCD16+ intermediate

monocytes produce abundant IL-10 [46], it would be pertinent

to determine whether the elevated levels of IL-10 released by

WBC from schistosome-infected patients in response to stimula-

tion with cercarial E/S [22] are due to elevated numbers of

CD14brightCD16+intermediate monocytes that have bound to

cercarial and/or egg E/S products.

In conclusion, our study shows that circulating

CD14brightCD16+ intermediate monocytes have a hitherto un-

appreciated potential to specifically bind schistosome E/S material

which may ultimately shape the development and function of

monocyte-derived myeloid cells (e.g. Mw and DC) recruited to

parasitized tissue sites during schistosome infection. In addition,

the ability of CD14brightCD16+ intermediate monocytes to

recognize parasite-derived E/S molecules is enhanced in schisto-

some-infected patients compared with uninfected individuals,

suggesting a mechanism of modulation in surface-expression of

parasite pattern recognition receptors on this specific monocyte

sub-set. Future lines of study should include: identification of the

innate immune cell PRRs involved in the binding of E/S products,

investigation of the cytokine secretion and activation profile of

ligand+ monocytes, the fate of bound ligands (e.g. internalization

and intracellular processing), and analysis of the functional

potential of E/S-exposed monocytes (e.g. phagocytosis and/or

Figure 4. CD14brightCD16+ intermediate monocytes from co-infected individuals bind cercarial E/S ligands more efficiently than
those from un-infected individuals. A). The proportions of each monocyte sub-set that bound cercarial E/S compared between participants
grouped according to schistosome infection status (un-infected, infected and co-infected). Horizontal bars denote mean proportions of ligand+ cells
for each group. Post-hoc pairwise comparisons (Fisher’s least significant difference tests) are shown where ANOVA was significant, *p,0.05, **p,
0.01. B). MFI for each sub-set incubated with cercarial E/S illustrating the relative quantity of ligand binding. Bars denote median MFI for each
infection group. Post-hoc pairwise Mann Whitney U comparisons are shown where non-parametric Kruskal Wallis tests were significant, *p,0.05,
**p,0.01. Cell proportions in the ligand+ gate and MFI for cells incubated without ligand were subtracted from those of cells incubated with
fluorescently-labelled cercarial E/S products prior to comparison between infection groups.
doi:10.1371/journal.pntd.0002817.g004
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antigen presentation). In spite of these unknowns, our study

indicates that exposure to schistosome-derived E/S products may

profoundly influence the function of circulating monocyte sub-sets,

which in turn may have substantial modulating effects on human

immune reactivity. Importantly, differences in the responsiveness

of circulating APC precursors to schistosome E/S material may

impact upon permissiveness to invading cercariae at the cutaneous

site of infection and the development of immunopathology around

eggs sequestered in host tissues.

Supporting Information

Figure S1 The efficiency of the three monocyte sub-sets
to bind zymosan does not differ according to infection
status. A). The proportions of each monocyte sub-set that bound

Alexafluor488-conjugated zymosan bio-particles compared be-

tween participants grouped according to schistosome infection

status (un-infected, infected and co-infected). Horizontal bars

denote mean proportions of ligand+ cells for each group. Post-hoc

pairwise comparisons (Fisher’s least significant difference tests) are

shown where ANOVA was significant, *p,0.05, **p,0.01. B).

MFI for each monocyte sub-set incubated with zymosan bio-

particles illustrating the relative quantity of antigen binding

compared by infection status. Bars denote median MFI for each

infection group. Post-hoc pairwise Mann Whitney U comparisons

are shown where non-parametric Kruskal Wallis tests were

significant, *p,0.05, **p,0.01. Cell proportions in the ligand+

gate and MFI for cells incubated without ligand were subtracted

from those of cells incubated with fluorescently-labelled ligands

prior to comparison between infection groups.

(TIF)

Figure S2 The efficiency of the three monocyte sub-sets
to bind D-mannose does not differ according to infection
status. A). The proportions of each monocyte sub-set that bound

fluorescein-conjugated D-mannose compared between partici-

pants grouped according to schistosome infection status (un-

infected, infected and co-infected). Horizontal bars denote mean

proportions of ligand+ cells for each group. Post-hoc pairwise

comparisons (Fisher’s least significant difference tests) are shown

where ANOVA was significant, *p,0.05, **p,0.01. B). MFI for

each monocyte sub-set incubated with D-mannose, illustrating the

relative quantity of antigen binding compared by infection status.

Bars denote median MFI for each infection group. Post-hoc

pairwise Mann Whitney U comparisons are shown where non-

parametric Kruskal Wallis tests were significant, *p,0.05, **p,

0.01. Cell counts in the ligand+ gate and MFI for cells incubated

without ligand were subtracted from those of cells incubated with

fluorescently-labelled ligands prior to comparison between infec-

tion groups.

(TIF)
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